Quantized electric quadrupole insulators have recently been proposed as novel quantum states of matter in two spatial dimensions. Gapped otherwise, they can feature zero-dimensional topological corner mid-gap states protected by the bulk spectral gap, reflection symmetries and a spectral symmetry. Here we introduce a topolectrical circuit design for realizing such corner modes experimentally and report measurements in which the modes appear as topological boundary resonances in the corner impedance profile of the circuit. Whereas the quantized bulk quadrupole moment of an electronic crystal does not have a direct analogue in the classical topolectricalcircuit framework, the corner modes inherit the identical form from the quantum case. Due to the flexibility and tunability of electrical circuits, they are an ideal platform for studying the reflection symmetry-protected character of corner modes in detail. Our work therefore establishes an instance where topolectrical circuitry is employed to bridge the gap between quantum theoretical modelling and the experimental realization of topological band structures. arXiv:1708.03647v2 [cond-mat.mes-hall]
This supplementary contains the following material arranged by sections:1. Periodic-open boundary condition (PBC-OBC) evolution through imaginary flux -detailed derivations leading to key results Eqs. 1 and the discussion after Eq. 7 of the main text.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.