The Coronavirus disease 2019 (COVID-19) global pandemic has transformed almost every facet of human society throughout the world. Against an emerging, highly transmissible disease, governments worldwide have implemented non-pharmaceutical interventions (NPIs) to slow the spread of the virus. Examples of such interventions include community actions, such as school closures or restrictions on mass gatherings, individual actions including mask wearing and self-quarantine, and environmental actions such as cleaning public facilities. We present the Worldwide Non-pharmaceutical Interventions Tracker for COVID-19 (WNTRAC), a comprehensive dataset consisting of over 6,000 NPIs implemented worldwide since the start of the pandemic. WNTRAC covers NPIs implemented across 261 countries and territories, and classifies NPIs into a taxonomy of 16 NPI types. NPIs are automatically extracted daily from Wikipedia articles using natural language processing techniques and then manually validated to ensure accuracy and veracity. We hope that the dataset will prove valuable for policymakers, public health leaders, and researchers in modeling and analysis efforts to control the spread of COVID-19.
While much data within a patient's electronic health record (EHR) is coded, crucial information concerning the patient's care and management remain buried in unstructured clinical notes, making it difficult and time-consuming for physicians to review during their usual clinical workflow. In this paper, we present our clinical note processing pipeline, which extends beyond basic medical natural language processing (NLP) with concept recognition and relation detection to also include components specific to EHR data, such as structured data associated with the encounter, sentencelevel clinical aspects, and structures of the clinical notes. We report on the use of this pipeline in a disease-specific extractive text summarization task on clinical notes, focusing primarily on progress notes by physicians and nurse practitioners. We show how the addition of EHR-specific components to the pipeline resulted in an improvement in our overall system performance and discuss the potential impact of EHR-specific components on other higher-level clinical NLP tasks.
Background Although electronic health records (EHRs) have been widely adopted in health care, effective use of EHR data is often limited because of redundant information in clinical notes introduced by the use of templates and copy-paste during note generation. Thus, it is imperative to develop solutions that can condense information while retaining its value. A step in this direction is measuring the semantic similarity between clinical text snippets. To address this problem, we participated in the 2019 National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing Consortium (OHNLP) clinical semantic textual similarity (ClinicalSTS) shared task. Objective This study aims to improve the performance and robustness of semantic textual similarity in the clinical domain by leveraging manually labeled data from related tasks and contextualized embeddings from pretrained transformer-based language models. Methods The ClinicalSTS data set consists of 1642 pairs of deidentified clinical text snippets annotated in a continuous scale of 0-5, indicating degrees of semantic similarity. We developed an iterative intermediate training approach using multi-task learning (IIT-MTL), a multi-task training approach that employs iterative data set selection. We applied this process to bidirectional encoder representations from transformers on clinical text mining (ClinicalBERT), a pretrained domain-specific transformer-based language model, and fine-tuned the resulting model on the target ClinicalSTS task. We incrementally ensembled the output from applying IIT-MTL on ClinicalBERT with the output of other language models (bidirectional encoder representations from transformers for biomedical text mining [BioBERT], multi-task deep neural networks [MT-DNN], and robustly optimized BERT approach [RoBERTa]) and handcrafted features using regression-based learning algorithms. On the basis of these experiments, we adopted the top-performing configurations as our official submissions. Results Our system ranked first out of 87 submitted systems in the 2019 n2c2/OHNLP ClinicalSTS challenge, achieving state-of-the-art results with a Pearson correlation coefficient of 0.9010. This winning system was an ensembled model leveraging the output of IIT-MTL on ClinicalBERT with BioBERT, MT-DNN, and handcrafted medication features. Conclusions This study demonstrates that IIT-MTL is an effective way to leverage annotated data from related tasks to improve performance on a target task with a limited data set. This contribution opens new avenues of exploration for optimized data set selection to generate more robust and universal contextual representations of text in the clinical domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.