This study aimed at investigating the impact of hemolysis on different coagulation parameters. A total of 216 venous blood samples without visible hemolysis were collected from adult patients at a tertiary referral center over six months. The plasma obtained was quantified for six coagulation parameters including prothrombin time, activated partial thromboplastin time, fibrinogen, D-dimer, antithrombin III, and protein C. The rest of the plasma from each blood sample was aliquoted into three tubes, each containing 1 mL of plasma with three different volumes of cell-free hemoglobin (i.e., 2, 4, 8 μL) from lysed RBCs to create simulated hemolyzed blood samples with hemoglobin concentration of approximately 0.1, 0.2, and 0.4 g/dL to mimic mild (1+), moderate (2+), and severe (3+) hemolysis, respectively, before repeating the coagulation tests to determine possible correlation between the simulated degree of hemolysis and the changes in test results of the coagulation parameters. Spearman correlation analysis showed significant decreases in the values of activated partial thromboplastin time, fibrinogen, D-dimer, and protein C values with an increasing degree of simulated hemolysis (all P < .01). Comparison of the percentage bias of biological variance showed significant positive associations of cell-free hemoglobin concentrations with the percentage bias of D-dimer and protein C. However, only the former was still within the range of biological variance under condition of simulated hemolysis. Besides, the presence of cell-free hemoglobin regardless of concentration had a notable impact on the percentage bias of activated partial thromboplastin time, whereas the influence was non-significant for prothrombin time, fibrinogen, and antithrombin III. The results showed different impacts of simulated hemolysis on six coagulation parameters, highlighting the dependence of clinical reliability on the coagulation parameter to be investigated in hemolytic blood samples.
Although peripheral blood reticulocyte enumeration reflects bone marrow functional integrity, which is important for differential diagnosis of hematological diseases, the factors affecting its accuracy have not been adequately addressed. Using 100 consecutive venous blood samples being processed with four supravital staining techniques [i.e., brilliant cresyl blue (BCB), new methylene blue (NMB), and BCB/NMB with Liu’s stain] for reticulocyte enumeration, two technologists (senior vs. junior) conducted microscopic counting. The results were compared with those obtained with an automated system (Sysmex XE-5000) that served as the standard. The aims of this study were to identify (1) the technique that gave the most reliable outcome, and (2) possible human factors (i.e., seniority, repeated counting) that may affect the counting results. Analysis showed least bias (i.e., deviation from automated counting) associated with BCB staining, followed by NMB. In addition, the senior observer exhibited a higher bias in counting compared with their junior counterpart. Repeated counting also correlated with a higher rate of bias. Nevertheless, inter-observer consistency was high (intraclass correlation coefficient >0.95) and inter-/intra-observer variations were non-significant (both p > 0.05). Our results supported the use of BCB stain for reticulocyte enumeration and the reliability of manual counting despite the involvement of human factors, which had negligible impacts on the final outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.