This paper presents a new method for evaluating boolean set operations between Binary Space Partition (BSP) trees. Our algorithm has many desirable features including both numerical robustness and O(n) output sensitive time complexity, while simultaneously admitting a straightforward implementation. To achieve these properties, we present two key algorithmic improvements. The first is a method for eliminating null regions within a BSP tree using linear programming. This replaces previous techniques based on polygon cutting and tree splitting. The second is an improved method for compressing BSP trees based on a similar approach within binary decision diagrams. The performance of the new method is analyzed both theoretically and experimentally. Given the importance of boolean set operations, our algorithms can be directly applied to many problems in graphics, CAD and computational geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.