Interactions between a widely used polycationic polymer, polyethyleneimine (PEI), and a Gram-negative bacteria, E. coli, are investigated using atomic force microscopy (AFM) quantitative imaging. The effect of PEI, a known membrane permeabilizer, is characterized by probing both the structure and elasticity of the bacterial cell envelope. At low concentrations, PEI induced nanoscale membrane perturbations all over the bacterial surface. Despite these structural changes, no change in cellular mechanics (Young’s modulus) was detected and the growth of E. coli is barely affected. However, at high PEI concentrations, dramatic changes in both structure and cell mechanics are observed. When immobilized on a flat surface, the ability of PEI to alter the membrane structure and reduce bacterial elasticity is diminished. We further probe this immobilization-induced effect by covalently attaching the polymer to the surface of polydopamine nanoparticles (PDNP). The nanoparticle-immobilized PEI (PDNP-PEI), though not able to induce major structural changes on the outer membrane of E. coli (in contrast to the flat surface), was able to bind to and reduce the Young’s modulus of the bacteria. Taken together, our data demonstrate that the state of polycationic polymers, whether bound or free—which greatly dictates their overall configuration—plays a major role on how they interact with and disrupt bacterial membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.