With the rich data on the web, a documents clustering task for monolingual documents is insufficient in order to produce an efficient information retrieval system. A Multilingual Document Clustering (MDC) had been introduced and it is one of the most popular trends in the area of natural language processing (NLP). In this paper, the effects of applying different clustering linkages coupled with different proximity measurements on the clustering bilingual Malay-English documents in parallel are investigated. A Hierarchical Agglomerative Clustering (HAC) has been implemented and applied in clustering bilingual Malay-English documents. Several different linkages are used in the HAC method that includes Single, Complete, Centroid and Average linkages. Not only that, the cosine similarity and the extend Jaccard coefficient are also applied in order to investigate a proper proximity measurement that can be coupled with the different type of clustering linkages used for clustering bilingual news articles written in English and Malay. The HAC method coupled with the average linkage can be considered to produce reasonable clustering results even though the average DBI is a bit high. Now only that, the study also shows that the extend Jaccard coefficient proximity measurement can produce a better clustering results compared to the cosine similarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.