The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF) receptor, and Jun N-terminal kinase (JNK) signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF)-Breathless (FGF receptor) axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern.
Most genes function at multiple stages of metazoan development, in dividing and nondividing cells. Generating mouse conditional knock-outs (cKO), where a gene can be eliminated in a temporally and spatially controlled manner, is a valuable technique because it allows study of gene function at any stage of life. In contrast and despite the development of many other powerful genetic tools, cKO has thus far been lacking in Drosophila. We combined several recent molecular and genetic technical advances in an approach termed integrase-mediated approach for gene knock-out (IMAGO). IMAGO allows the replacement of any genomic sequence, such as a gene, with another desired sequence, including cKO alleles that can be used to create positively marked mutant cells. IMAGO should also be applicable to other genetic model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.