Nondestructive inspection (NDI) has immensely contributed to the restoration of historic and artistic works. As one of the most common used NDI methods, active thermography is an easy-to-operate and efficient technique. Principal component thermography (PCT) has been widely used to deal with thermographic data for enhancing the visibility of subsurface defects. Unlike PCT, edge-group sparse PCT introduced herein enforces sparsity of principal component (PC) loadings by considering the spatial connectivity of thermographic image pixels. The feasibility and effectiveness of this method is illustrated by the experimental results of the defect characterization in an ancient marquetry sample with a fir wood support.
Non-destructive testing (NDT) methods are commonly used to disclose defective inner structures of materials, where active infrared thermography is a popular NDT technique because of its easy operation, low cost, and the capability of rapid scanning of large areas. However, the thermographic signals often suffer from noise and non-uniform backgrounds, making defect identification difficult. Therefore, an additional processing step of thermographic data is often required to enhance the contrast between defects and their surroundings. In recent years, multivariate statistical analysis methods have been widely adopted to achieve this aim, among which principal component thermography (PCT) is a typical example. Sparse PCT (SPCT) further improves PCT by adding sparsity constraints to the optimization problem. Nevertheless, the performance of SPCT depends on the subjective selection of the tuning parameters. The optimal parameter values are case-dependent and unknown. In this work, an alternative thermographic data analysis method is proposed based on exploratory factor analysis (EFA). By means of factor rotation, EFA minimizes the complexity of factor loadings and makes the results more interpretable. In doing this, EFA provides results similar to those of SPCT, while there is no need for parameter selection. Experimental results illustrate the feasibility of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.