In this paper, we define the blocking wordlength pattern of a blocked fractional factorial design by combining the wordlength patterns of treatment-defining words and block-defining words. The concept of minimum aberration can be defined in terms of the blocking wordlength pattern and provides a good measure of the estimation capacity of a blocked fractional factorial design. By blending techniques of coding theory and finite projective geometry, we obtain combinatorial identities that govern the relationship between the blocking wordlength pattern of a blocked 2 ny m design and the split wordlength pattern of its blocked residual design. Based on these identities, we establish general rules for identifying minimum aberration blocked 2 ny m designs in terms of their blocked residual designs. Using these rules, we study the structures of some blocked 2 ny m designs with minimum aberration.
The performance of minimum aberration two-level fractional factorial designs is studied under two criteria of model robustness. Simple suf®cient conditions for a design to dominate another design with respect to each of these two criteria are derived. It is also shown that a minimum aberration design of resolution III or higher maximizes the number of two-factor interactions which are not aliases of main effects and, subject to that condition, minimizes the sum of squares of the sizes of alias sets of two-factor interactions. This roughly says that minimum aberration designs tend to make the sizes of the alias sets very uniform. It follows that minimum aberration is a good surrogate for the two criteria of model robustness that are studied here. Examples are given to show that minimum aberration designs are indeed highly ef®cient.
Booth and Cox proposed the E(s 2 ) criterion for constructing twolevel supersaturated designs. Nguyen [Technometrics 38 (1996) 69-73] and Tang and Wu [Canad. J. Statist 25 (1997) 191-201] independently derived a lower bound for E(s 2 ). This lower bound can be achieved only when m is a multiple of N − 1, where m is the number of factors and N is the run size. We present a method that uses difference families to construct designs that satisfy this lower bound. We also derive better lower bounds for the case where the Nguyen-Tang-Wu bound is not achievable. Our bounds cover more cases than a bound recently obtained by Butler, Mead, Eskridge and Gilmour [J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001) 621-632]. New E(s 2 )-optimal designs are obtained by using a computer to search for designs that achieve the improved bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.