A study involving the relatively rare combination of heterogeneous catalysis conducted under microwave conditions is presented. Carbon-carbon bond formation, including Negishi and Suzuki couplings, can be quickly effected with aryl chloride partners by using a base metal (nickel) adsorbed in the pores of activated charcoal. Aminations were also studied, along with cross-couplings of vinyl alanes with benzylic chlorides as a means to stereodefined allylated aromatics. Reaction times for all these processes are typically reduced from several hours to minutes in a microwave reactor.
We have previously demonstrated that serum- and glucocorticoid-inducible kinase (SGK) plays a causal role in facilitating memory formation of spatial learning in rats, but the SGK signaling pathway involved in spatial memory formation is not known. The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) also plays an important role in memory formation. We therefore examined whether SGK is a downstream target of the MAPK/ERK signaling cascade and whether ERK signaling to SGK mediates spatial memory formation in rats. Results from an in vitro kinase assay revealed that ERK directly phosphorylates SGK at Ser78, but not at Thr256 and Ser422, whereas inhibition of ERK by PD98059 significantly decreased SGK phosphorylation at Ser78, Thr256 and Ser422 following spatial training. Prior administration of PD98059 also antagonized the enhancing effect of 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C activator that also causes ERK activation, on SGK phosphorylation and cAMP response element binding protein (CREB) phosphorylation. Moreover, TPA-induced SGK phosphorylation and CREB phosphorylation was abolished by prior SGKS78A mutant DNA transfection. By contrast, SGKS78A mutant DNA transfection to hippocampal area CA1 did not affect spatial memory formation, whereas SGKT256A mutant DNA transfection to area CA1 significantly impaired spatial memory formation. ERK was known to regulate sgk mRNA expression, but in the present study we have demonstrated that SGK is also a downstream target of the ERK signaling cascade; ERK directly phosphorylates SGK at Ser78 and indirectly activates SGK at Thr256 and Ser422 through unknown intermediate molecules. Furthermore, ERK activation of SGK is involved in spatial memory formation in rats.
[reaction: see text] CuH-catalyzed asymmetric conjugate reduction of beta-silyl-alpha,beta-unsaturated esters has been developed. Using PMHS as a stoichiometric source of hydride and in situ generated CuH ligated by Solvias' JOSIPHOS analogue PPF-P(t-Bu)(2) leads to highly enantioselective 1,4-reductions.
An efficient method for the synthesis of nonracemic diarylmethanols has been developed. The use of ( R)-(-)-(DTBM-SEGPHOS)CuH effects highly enantioselective 1,2-hydrosilylation of prochiral diaryl ketones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.