This article presents a useful measuring system for the simultaneous measurement of six-degrees-of-freedom motion errors of a moving stage. The system integrates a miniature fiber coupled laser interferometer with specially designed optical paths and quadrant detectors, capable of measuring six-degrees-of-freedom motion errors. Using this model, the proposed measuring method provides rapid performance, simplicity of setup, and preprocess verification of a linear stage. The experimental setups and measuring procedures, and a systematic calculated method for the error verification are presented in the paper. The system’s resolution of measuring straightness error component is about 25nm. The resolution of measuring the pitch and yaw angular error component is about 0.06arcs. With the comparison between the HP calibration system and the proposed system in the measuring range of 120mm, the system accuracy of measuring straightness error and angular error is within the range ±0.6μm and ±0.3arcs.
Patients with LOS of >32 h were reevaluated first. After QIP, the proportion of LOSs of >48 h dropped significantly. Changing the choice architecture may require further systemic effort and a longer observation duration. Higher-level administrators will need to formulate a more comprehensive bed management plan to speed up the turnover rate of free inpatient beds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.