Lapatinib is an inhibitor of human epidermal growth factor receptor 2 (HER2), which is overexpressed in 20-25% of breast cancers. Clinically, lapatinib has shown promising benefits for HER2-positive breast cancer patients; however, patients eventually acquire resistance, limiting its long-term use. In a previous study, we found that interleukin-6 (IL-6) production was increased in acquired lapatinib-resistant HER2-positive breast cancer cells. In the present study, we confirmed that lapatinib-resistant cells had elevated IL-6 expression and also maintained both stemness population and property. The increase in IL-6 was required for stemness property maintenance, which was mediated primarily through the activation of signal transducer and activator of transcription 3 (STAT3). Blocking IL-6 activity reduced spheroid formation, cell viability and subsequently overcame lapatinib resistance, whereas stimulation of IL-6 rendered parental cells more resistant to lapatinib-induced cytotoxicity. These results point to a novel mechanism underlying lapatinib resistance and provide a potential strategy to overcome resistance via IL-6 inhibition.
Background/Aim: Sorafenib is now standard treatment for advanced hepatocellular carcinoma (HCC). However, therapeutic efficacy is not as good as was predicted. Many efforts are being made to improve HCC sensitivity to sorafenib. Our previous study demonstrated that co-treatment with chrysin enhanced sorafenib sensitivity through inhibition of ATP-binding cassette superfamily G member 2 (ABCG2). Whether there is another mechanism other than inhibition of ABCG2 underlying chrysin-mediated synergistic effect is still not completely elucidated. Materials and Methods: Phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) was examined by western blot. Cell viability was examined by crystal violet staining. The importance of ERK1/2 phosphorylation was assessed by overexpression and blockage of mitogen-activated protein kinase kinase 1 (MEK1). Results: Chrysin induced sustained ERK1/2 phosphorylation of HCC cells in both time-and dosedependent manners. Overexpression of MEK1 enhanced, whereas blockage of MEK1 led to loss of chrysin-synergized sorafenib effect, through modulating ERK1/2 phosphorylation level. Conclusion: These results identify another novel mechanism underlying chrysin-mediated synergistic effect on sorafenib activity in HCC cells.
Background/Aim: Hepatitis B virus-encoded X protein (HBx) plays a pivotal role in hepatocellular carcinoma (HCC) progression and treatment resistance. Interestingly, our previous study unexpectedly showed that full-length HBx sensitized HCC cells to lapatinib by up-regulating erb-b2 receptor tyrosine kinase 3 (ERBB3). We further aimed to map the exact motif within the HBx sequence responsible for lapatinib sensitization. Materials and Methods: The exact motif responsible for the lapatinib sensitization was assessed by construction of various fragments of HBx. Cell viability was examined by the MTT assay and crystal violet staining. Results: Our investigation found that lapatinib sensitivity and up-regulation of ERBB3 promoter activity were observed only in HCC cells expressing C-terminal residues of HBx. Furthermore, C-terminal HBx peptide induced ERBB3 protein expression and sensitivity to lapatinib. Conclusion: These results not only indicate that the C-terminus of HBx is required for lapatinib sensitivity, but also provide clues to developing a predictive biomarker for response of HCC to lapatinib in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.