Background: Molecular analysis of mitochondrial DNA (mtDNA) has provided a final diagnosis for many of the mitochondrial diseases. We evaluated the Agilent 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA) to determine whether the system could replace the conventional restriction fragment length polymorphism (RFLP) analysis by the agarose gel electrophoresis for the detection of the mtDNA mutation. Methods: Three members of a family with MELAS syndrome and four members of a family with MERRF syndrome were recruited for this study. After PCR and restriction enzyme digestion, DNA fragments were separated on the Agilent 2100 bioanalyzer in conjunction with the DNA 500 and DNA 1000 Labchip kits and by electrophoresis on precast 3% agarose gels. Results: The data generated by the DNA 500 and DNA 1000 assays using the Agilent 2100 bioanalyzer showed a lower percentage error and a better reproducibility as compared to those obtained by the conventional method. Conclusion: Based on the performance of the bioanalyzer, we suggest that this novel Labchip is adequate to replace the current RFLP analysis by the agarose gel electrophoresis for mtDNA mutation detection. D
By using cDNA microarray and RT-PCR techniques, we investigated the genome-wide alteration of gene expression in skin fibroblasts from patients with myoclonic epilepsy and ragged-red fibers (MERRF) syndrome. By screening for the genes with altered levels of expression, we first discovered that matrix metalloproteinase 1 (MMP1) was highly induced in the primary culture of skin fibroblasts of a female patient in a four-generation family with MERRF syndrome. This phenomenon was confirmed in skin fibroblasts from three other MERRF patients harboring about 85% of mtDNA with A8344G mutation. A further study revealed that the expression of MMP1 could be further induced by treatment of the skin fibroblasts with 200 microM hydrogen peroxide (H2O2) and inhibited by 1 mM N-acetylcysteine. Moreover, the intracellular level of H2O2 in skin fibroblasts of the female MERRF patient was higher than those of the asymptomatic family members and age-matched healthy controls. These findings imply that the increase in the expression of MMP1 may represent one of the responses to the increased oxidative stress in the skin fibroblasts of MERRF patients. We suggest that in affected tissues the oxidative stress-elicited overexpression of MMP1, and probably other matrix metalloproteinases involved in cytoskeleton remodeling, may play an important role in the pathogenesis and progression of mitochondrial encephalomyopathies such as MERRF syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.