There has been a recent line of work automatically learning scripts from unstructured texts, by modeling narrative event chains. While the dominant approach group events using event pair relations, LSTMs have been used to encode full chains of narrative events. The latter has the advantage of learning long-range temporal orders 1 , yet the former is more adaptive to partial orders. We propose a neural model that leverages the advantages of both methods, by using LSTM hidden states as features for event pair modelling. A dynamic memory network is utilized to automatically induce weights on existing events for inferring a subsequent event. Standard evaluation shows that our method significantly outperforms both methods above, giving the best results reported so far.
Linguistic steganography is concerned with hiding information in natural language text. One of the major transformations used in linguistic steganography is synonym substitution. However, few existing studies have studied the practical application of this approach. In this article we propose two improvements to the use of synonym substitution for encoding hidden bits of information. First, we use the Google n-gram corpus for checking the applicability of a synonym in context, and we evaluate this method using data from the SemEval lexical substitution task and human annotated data. Second, we address the problem that arises from words with more than one sense, which creates a potential ambiguity in terms of which bits are represented by a particular word. We develop a novel method in which words are the vertices in a graph, synonyms are linked by edges, and the bits assigned to a word are determined by a vertex coding algorithm. This method ensures that each word represents a unique sequence of bits, without cutting out large numbers of synonyms, and thus maintains a reasonable embedding capacity.
Multilingual BERT (mBERT) has shown reasonable capability for zero-shot cross-lingual transfer when fine-tuned on downstream tasks. Since mBERT is not pre-trained with explicit cross-lingual supervision, transfer performance can further be improved by aligning mBERT with cross-lingual signal. Prior work proposes several approaches to align contextualised embeddings. In this paper we analyse how different forms of cross-lingual supervision and various alignment methods influence the transfer capability of mBERT in zero-shot setting. Specifically, we compare parallel corpora vs. dictionary-based supervision and rotational vs. fine-tuning based alignment methods. We evaluate the performance of different alignment methodologies across eight languages on two tasks: Name Entity Recognition and Semantic Slot Filling. In addition, we propose a novel normalisation method which consistently improves the performance of rotation-based alignment including a notable 3% F1 improvement for distant and typologically dissimilar languages. Importantly we identify the biases of the alignment methods to the type of task and proximity to the transfer language. We also find that supervision from parallel corpus is generally superior to dictionary alignments.
We tackle the task of extracting tweets that mention a specific event from all tweets that contain relevant keywords, for which the main challenges include unbalanced positive and negative cases, and the unavailability of manually labeled training data. Existing methods leverage a few manually given seed events and large unlabeled tweets to train a classifier, by using expectation regularization training with discrete ngram features. We propose a LSTM-based neural model that learns tweet-level features automatically. Compared with discrete ngram features, the neural model can potentially capture non-local dependencies and deep semantic information, which are more effective for disambiguating subtle semantic differences between true event mentions and false cases that use similar wording patterns. Results on both tweets and forum posts show that our neural model is more effective compared with a state-of-the-art discrete baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.