Dinitrosyl iron complexes (DNICs) have been recognized as storage and transport agents of nitric oxide capable of selectively modifying crucial biological targets via its distinct redox forms (NO(+), NO(•) and NO(-)) to initiate the signaling transduction pathways associated with versatile physiological and pathological responses. For decades, the molecular geometry and spectroscopic identification of {Fe(NO)2}(9) DNICs ({Fe(NO)x}(n) where n is the sum of electrons in the Fe 3d orbitals and NO π* orbitals based on Enemark-Feltham notation) in biology were limited to tetrahedral (CN = 4) and EPR g-value ∼2.03, respectively, due to the inadequacy of structurally well-defined biomimetic DNICs as well as the corresponding spectroscopic library accessible in biological environments. The developed synthetic methodologies expand the scope of DNICs into nonclassical square pyramidal and trigonal bipyramidal (CN = 5) and octahedral (CN = 6) {Fe(NO)2}(9) DNICs, as well as two/three accessible redox couples for mononuclear {Fe(NO)2}(9/10) and dinuclear [{Fe(NO)2}(9/10)-{Fe(NO)2}(9/10)] DNICs with biologically relevant S/O/N ligation modes. The unprecedented molecular geometries and electronic states of structurally well-defined DNIC models provide the foundation to construct a spectroscopic library for uncovering the identity of DNICs in biological environments as well as to determine the electronic structures of the {Fe(NO)2} core in qualitative and quantitative fashions by a wide range of spectroscopic methods. On the basis of (15)N NMR, electron paramagnetic resonance (EPR), IR, cyclic voltammetry (CV), superconducting quantum interference device (SQUID) magnetometry, UV-vis, single-crystal X-ray crystallography, and Fe/S K-edge X-ray absorption and Fe Kβ X-ray emission spectroscopies, the molecular geometry, ligation modes, nuclearity, and electronic states of the mononuclear {Fe(NO)2}(9/10) and dinuclear [{Fe(NO)2}(9/10)-{Fe(NO)2}(9/10)] DNICs could be characterized and differentiated. In addition, Fe/S K-edge X-ray absorption spectroscopy of tetrahedral DNICs deduced the qualitative assignment of Fe/NO oxidation states of {Fe(NO)2}(9) DNICs as a resonance hybrid of {Fe(II)((•)NO)(NO(-))}(9) and {Fe(III)(NO(-))2}(9) electronic states; the quantitative NO oxidation states of [(PhS)3Fe(NO)](-), [(PhS)2Fe(NO)2](-), and [(PhO)2Fe(NO)2](-) were further achieved by newly developed valence to core Fe Kβ X-ray emission spectroscopy as -0.58 ± 0.18, -0.77 ± 0.18, and -0.95 ± 0.18, respectively. The in-depth elaborations of electronic structures provide credible guidance to elucidate (a) the essential roles of DNICs modeling the degradation and repair of [Fe-S] clusters under the presence of NO, (b) transformation of DNIC into S-nitrosothiol (RSNO)/N-nitrosamine (R2NNO) and NO(+)/NO(•)/NO(-), (c) nitrite/nitrate activation producing NO regulated by redox shuttling of {Fe(NO)2}(9) and {Fe(NO)2}(10) DNICs, and (d) DNICs as H2S storage and cellular permeation pathway of DNIC/Roussin's red ester (RRE) for subsequent protein S-nitros...
The anionic syn-/ anti-[Fe(mu-SEt)(NO) 2] 2 (-) ( 2a) were synthesized and characterized by IR, UV-vis, EPR, and X-ray diffraction. The geometry of the [Fe(mu-S) 2Fe] core is rearranged in going from [{Fe(NO) 2} (9)-{Fe(NO) 2} (9)] Roussin's red ester [Fe(mu-SEt)(NO) 2] 2 ( 1a) (Fe...Fe distance of 2.7080(5) A) to the [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] complex 2a (Fe...Fe distance of 2.8413(6) A) to minimize the degree of Fe...Fe interaction to stabilize complex 2a. On the basis of X-ray absorption (Fe K- and L-edge), EPR and SQUID, complex 2a is best described as the anionic [{Fe(NO) 2} (9)-{Fe(NO) 2} (10)] Roussin's red ester with the fully delocalized mixed-valence core. The complete bridged-thiolate cleavage yielded DNIC [(EtS) 2Fe(NO) 2] (-) ( 3a) in the reaction of 2 equiv of [EtS] (-) and complex 1a, whereas reaction of 2 equiv of [(t)BuS] (-) with [Fe(micro-S (t)Bu)(NO) 2] 2 (1b) gave DNIC [((t)BuS) 2Fe(NO) 2] (-) (3b) and the anionic Roussin's red ester [Fe(mu-S (t)Bu)(NO) 2] 2 (-) (2b) through bridged-thiolate cleavage in combination with reduction. In contrast to the inertness of DNIC 3b toward complex 1b, nucleophile DNIC 3a induces the reduction of complex 1a to produce the anionic Roussin's red ester 2a. Interestingly, dissolution of complex 3a in MeOH at 298 K finally led to the formation of a mixture of complexes 2a and 3a, in contrast to the dynamic equilibrium of complexes 3b and 1b observed in dissolution of complex 3b in MeOH. These results illustrate the aspect of how the steric structures of nucleophiles ([EtS] (-) vs [ (t)BuS] (-) and [(EtS) 2Fe(NO)2](-) vs [((t)BuS) 2Fe(NO)2] (-)) function to determine the reaction products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.