The problem of computing the chromatic number of a P 5 -free graph (a graph which contains no path on 5 vertices as an induced subgraph) is known to be NP-hard. However, we show that for every fixed integer k, there exists a polynomial-time algorithm determining whether or not a P 5 -free graph admits a k-coloring, and finding one, if it does.
Clique separators in graphs are a helpful tool used by Tarjan as a divide-and-conquer approach for solving various graph problems such as the Maximum Weight Stable Set (MWS) Problem, Maximum Clique, Graph Coloring and Minimum Fill-in, but few examples of graph classes having clique separators are known. We use this method to solve MWS in polynomial time for two classes where the unweighted Maximum Stable Set (MS) Problem is solvable in polynomial time by augmenting techniques but the complexity of the MWS problem was open. Another example, namely a result by Alekseev for the MWS problem on a subclass of P 5 -free graphs obtained by clique separators, can be improved by our techniques. We also combine clique separators with decomposition by homogeneous sets in graphs and use the following notion: A graph is nearly Π if for each of its vertices, the subgraph induced by the set of its nonneighbors has property Π . We deal with the cases Π ∈ {chordal, perfect}. This also simplifies a result obtained by a method called struction.
Abstract. The k-partition problem is as follows: Given a graph G and a positive integer k, partition the vertices of G into at most k parts A 1 , A 2 , . . . , A k , where it may be specified that A i induces a stable set, a clique, or an arbitrary subgraph, and pairs A i , A j (i = j) be completely nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes the k-partition problem by specifying for each vertex x, a list L(x) of parts in which it is allowed to be placed. Many well-known graph problems can be formulated as list k-partition problems: e.g., 3-colorability, clique cutset, stable cutset, homogeneous set, skew partition, and 2-clique cutset. We classify, with the exception of two polynomially equivalent problems, each list 4-partition problem as either solvable in polynomial time or NP-complete. In doing so, we provide polynomial-time algorithms for many problems whose polynomial-time solvability was open, including the list 2-clique cutset problem. This also allows us to classify each list generalized 2-clique cutset problem and list generalized skew partition problem as solvable in polynomial time or NP-complete.
A graph is called "perfectly orderable" if its vertices can be ordered in such a way that, for each induced subgraph F, a certain "greedy" coloring heuristic delivers an optimal coloring of F. No polynomial-time algorithm to recognize these graphs is known. We present four classes of perfectly orderable graphs: Welsh-Powell perfect graphs, Matula perfect graphs, graphs of Dilworth number at most three, and unions of two threshold graphs. Graphs in each of the first three classes are recognizable in a polynomial time. In every graph that belongs to one of the first two classes, we can find a largest clique and an optimal coloring in a linear time.
Abstract. We provide a certifying algorithm for the problem of deciding whether a P5-free graph is 3-colorable by showing there are exactly six finite graphs that are P5-free and not 3-colorable and minimal with respect to this property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.