One of the most challenging obstacles in nanoparticle's surface modification is to achieve the concept that one ligand can accomplish multiple purposes. Upon such consideration, 3-aminopropoxy-linked quercetin (AmQu), a derivative of a natural flavonoid inspired by the structure of dopamine, is designed and subsequently used to modify the surface of thermally hydrocarbonized porous silicon (PSi) nanoparticles. This nanosystem inherits several advanced properties in a single carrier, including promoted anticancer efficiency, multiple drug resistance (MDR) reversing, stimuli-responsive drug release, drug release monitoring, and enhanced particle-cell interactions. The anticancer drug doxorubicin (DOX) is efficiently loaded into this nanosystem and released in a pH-dependent manner. AmQu also effectively quenches the fluorescence of the loaded DOX, thereby allowing the use of the nanosystem for monitoring the intracellular drug release. Furthermore, a synergistic effect with the presence of AmQu is observed in both normal MCF-7 and DOX-resistant MCF-7 breast cancer cells. Due to the similar structure as dopamine, AmQu may facilitate both the interaction and internalization of PSi into the cells. Overall, this PSi-based platform exhibits remarkable superiority in both multifunctionality and anticancer efficiency, making this nanovector a promising system for anti-MDR cancer treatment.
In the search for novel anticancer drugs, the potassium channel KV10.1 has emerged as an interesting cancer target. Here, we report a new group of KV10.1 inhibitors, namely the purpurealidin analogs. These alkaloids are produced by the Verongida sponges and are known for their wide variety of bioactivities. In this study, we describe the synthesis and characterization of 27 purpurealidin analogs. Structurally, bromine substituents at the central phenyl ring and a methoxy group at the distal phenyl ring seem to enhance the activity on KV10.1. The mechanism of action of the most potent analog 5 was investigated. A shift of the activation curve to more negative potentials and an apparent inactivation was observed. Since KV10.1 inhibitors can be interesting anticancer drug lead compounds, the effect of 5 was evaluated on cancerous and non-cancerous cell lines. Compound 5 showed to be cytotoxic and appeared to induce apoptosis in all the evaluated cell lines.
Magnetically recoverable and recyclable Co-Co 2 B nanocomposites are described for the catalytic and chemoselective reduction of nitroarenes using two different hydrogen sources, sodium borohydride and hydrazine hydrate. Both the systems display an interesting chemoselective reduction switch. The kinetics of reduction of nitroaromatics were studied for the first time and follow nitroreductase enzyme-like kinetics with exceedingly high K cat (5.2 6 10 4 s 21 ) and K cat /K M (4.4 6 10 6 M 21 s 21 ) values, reaching the state of catalytic perfection. The recyclability of the catalyst system was studied by magnetically recovering the nano composite catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.