1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is a kind of insensitive high explosive that can be used as an energetic material in nuclear weapon and space applications. In this work, we have studied the effect of aging on the properties of TATB from a 20 year old lot that had been in direct contact with casing and natural environment conditions. The kinetics was studied using the temperature at the maximum reaction rate (peak) and isoconversional methods from TGA and DTA data obtained at five heating rates under a nitrogen atmosphere. The properties investigated for thermal stability indicate that there is no change in the properties during prolonged exposure in natural environment conditions. The activation energy calculated by the Kissinger method was 179.9 kJ·mol −1 by DTG and the 176.9 kJ·mol −1 by DTA. The experimental results of kinetic analysis obtained by isoconversional methods are in good agreement and very close to each other. In the analysis of reaction mechanisms, the reaction models could be probably best described by a surface contraction mechanism using the Coats-Redfern and Criado methods. The thermodynamic parameters such as Gibbs free energy, enthalpy and entropy of activation were also investigated. The self-accelerating decomposition temperature (TSADT) and critical temperature for thermal explosion (Tb) were also calculated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.