SUMMARYThe nasal carriage rate of Staphylococcus aureus was significantly higher in hospitalized persons (children, adult females and staff) -53-8 %, -than in similar persons at a local clinic -29-8 % (P < 0-001) -in Ile-Ife, Nigeria. However, unlike studies carried out elsewhere, a higher proportion ofS. aureus strains obtained from persons at the clinic were resistant to commonly used antimicrobial agents than were strains isolated in the hospital. This has been attributed to the ease at which these drugs can be obtained by the general population and used unsupervised and indiscriminately. Methicillin was the most effective antimicrobial agent against pathogenic staphylococci (2-2 % resistance), followed by erythromycin (16-5 % resistance), co-trimaxozole (28-0 % resistance), chloramphenicol (76-9 % resistance), tetracycline (78-6 % resistance) and penicillin and ampicillin (97-8 % resistance).The widespread resistance of S. aureus to penicillin and ampicillin (and other antimicrobial agents) is of clinical significance in the treatment of post-operative infections, since carriers are reportedly more prone to such infections than are non-carriers.
Cheeses made with unpasteurized milk are a safety concern due to possible contamination with foodborne pathogens. Listeria monocytogenes and Escherichia coli O157:H7 have been implicated in several outbreaks and recalls linked to Gouda cheese made with unpasteurized milk. The U.S. Food and Drug Administration Code of Federal Regulations requires cheeses made with unpasteurized milk to be aged at a minimum of 1.7°C for at least 60 days before entering interstate commerce. The goal of this study was (i) to assess the population dynamics of L. monocytogenes and E. coli O157:H7 during aging of Gouda cheese when the pathogens were inoculated into the unpasteurized milk used for manufacture and (ii) to compare the native microbial populations throughout manufacture and aging. Unpasteurized milk was inoculated with L. monocytogenes at 1 or 3 log CFU/mL or with E. coli O157:H7 at 1 log CFU/mL, and Gouda cheese was manufactured in laboratory-scale or pilot plant–scale settings. Cheeses were stored at 10°C for at least 90 days, and some cheeses were stored up to 163 days. Initial native microflora populations in unpasteurized milk did not differ significantly for laboratory-scale or pilot plant–scale trials, and population dynamics trended similarly throughout cheese manufacture and aging. During manufacture, approximately 81% of the total L. monocytogenes and E. coli O157:H7 populations was found in the curd samples. At an inoculation level of 1 log CFU/mL, L. monocytogenes survived in the cheese beyond 60 days in four of five trials. In contrast, E. coli O157:H7 was detected beyond 60 days in only one trial. At the higher 3-log inoculation level, the population of L. monocytogenes increased significantly from 3.96 ± 0.07 log CFU/g at the beginning of aging to 6.00 ± 0.73 log CFU/g after 150 days, corresponding to a growth rate of 0.04 ± 0.02 log CFU/g/day. The types of native microflora assessed included Enterobacteriaceae, lactic acid bacteria, mesophilic bacteria, and yeasts and molds. Generally, lactic acid and mesophilic bacterial populations remained consistent at approximately 8 to 9 log CFU/g during aging, whereas yeast and mold populations steadily increased. The data from this study will contribute to knowledge about survival of these pathogens during Gouda cheese production and will help researchers assess the risks of illness from consumption of Gouda cheese made with unpasteurized milk. HIGHLIGHTS
Refrigerated ready-to-eat (RTE) dips often have pH and water activity combinations conducive to the proliferation of foodborne pathogens, including Listeria monocytogenes. This study conducted product assessments of five refrigerated RTE dips: baba ghanoush, guacamole, hummus, pesto, and tahini, along with individual dip components including avocado, basil, chickpeas, cilantro, eggplant, garlic, and jalapeno pepper. Dips and dip components were inoculated with 2 log CFU/g of L. monocytogenes and stored at 10˚C for 28 days. The pathogen was enumerated throughout storage and growth rates were determined using the DMFit program to compute the time required for L. monocytogenes to achieve a 1 log CFU/g increase in population. Survival and growth rates varied significantly between the refrigerated RTE dips and dip components assessed in this study. For dips, L. monocytogenes progressively decreased in baba ghanoush, pesto, and tahini. In contrast, the pathogen proliferated in both hummus and guacamole and the highest growth rate was observed in guacamole (0.34±0.05 log CFU/g per day) resulting in a 1 log CFU/g increase in population in 7.8 days. L. monocytogenes proliferated in all dip components with the exception of eggplant and garlic. The pathogen achieved the highest growth rate in chickpeas (2.22±1.75 log CFU/g per day) resulting in a computed 1 log CFU/g increase in only 0.5 days. Results from this study can aid in understanding how L. monocytogenes behaves in refrigerated RTE dips and dip components and data can be utilized in understanding product formulations and in risk assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.