We have developed an electrical method to study endothelial cell shape changes in real time in order to examine the mechanisms of alterations in the endothelial barrier function. Endothelial shape changes were quantified by using a monolayer of endothelial cells grown on a small (10-3 cm2) evaporated gold electrode and measuring the changes in electrical impedance. Bovine pulmonary microvessel endothelial cells and bovine pulmonary artery endothelial cells were used to study the effects of a-thrombin on cell-shape dynamics by the impedance measurement. a-Thrombin produced a dose-dependent decrease in impedance that occurred within 0.5 m inin both cell types, indicative of retraction of endothelial cells and widening of interendothelial junctions because of "rounding up" of the cells. The a-thrombin-induced decrease in impedance persisted for -2 hr, after which the value recovered to basal levels. Pretreatment of endothelial cells with the protein kinase C inhibitor, calphostin C, or with 8-bromoadenosine 3',5'-cyclic monophosphate prevented the decreased impedance, suggesting that the endothelial cell change is modulated by activation of second-messenger pathways. The a-thrombin-induced decrease in impedance was in agreement with the previously observed increases in transendothelial albumin permeability and evidence of formation of intercellular gaps after a-thrombin challenge. The impedance measurement may be a valuable in vitro method for the assessment of mechanisms of decreased endothelial barrier function occurring with inflammatory mediators. Since the rapidly occurring changes in endothelial cell shape in response to mediators such as thrombin are mediated activation of second-messenger pathways, the ability to monitor endothelial cell dynamics in real time may provide insights into the signal-transduction events mediating the increased endothelial permeability.The vascular endothelium plays a central role in the maintenance of vascular homeostasis. Vascular endothelial cell monolayer functions as a barrier between the blood and interstitial compartments (1). A decrease in the barrier properties of vascular endothelium leads to tissue edema. Increased endothelial permeability to plasma proteins is the characteristic feature of many inflammatory conditions. Proinflammatory mediators such as a-thrombin, histamine, platelet-activating factor, and oxygen radicals have been shown to increase vascular endothelial permeability to macromolecules (2-8). However, the intracellular mechanisms by which these agents mediate the response remain unclear.The cultured endothelial cell monolayer grown on a porous filter has been used extensively to study the barrier function of endothelial cells (9, 10). We have examined in a series of studies the permeability-increasing properties of a-thrombin, a potent proinflammatory mediator (2-5, 11). Morphological studies indicated that a-thrombin causes endothelial cell retraction, which is believed to lead to intercellular gap formation and to the observed increases of the...
We tested the hypothesis that the albumin-docking protein gp60, which is localized in caveolae, couples to the heterotrimeric GTP binding protein Gi, and thereby activates plasmalemmal vesicle formation and the directed migration of vesicles in endothelial cells (ECs). We used the water-soluble styryl pyridinium dye N-(3-triethylaminopropyl)-4-(p-dibutylaminostyryl) pyridinium dibromide (FM 1-43) to quantify vesicle trafficking by confocal and digital fluorescence microscopy. FM 1-43 and fluorescently labeled anti-gp60 antibody (Ab) were colocalized in endocytic vesicles within 5 min of gp60 activation. Vesicles migrated to the basolateral surface where they released FM 1-43, the fluid phase styryl probe. FM 1-43 fluorescence disappeared from the basolateral EC surface without the loss of anti-gp60 Ab fluorescence. Activation of cell-surface gp60 by cross-linking (using anti-gp60 Ab and secondary Ab) in EC grown on microporous filters increased transendothelial 125I-albumin permeability without altering liquid permeability (hydraulic conductivity), thus, indicating the dissociation of hydraulic conductivity from the albumin permeability pathway. The findings that the sterol-binding agent, filipin, prevented gp60-activated vesicle formation and that caveolin-1 and gp60 were colocalized in vesicles suggest the caveolar origin of endocytic vesicles. Pertussis toxin pretreatment and expression of the dominant negative construct encoding an 11–amino acid Gαi carboxyl-terminal peptide inhibited endothelial 125I-albumin endocytosis and vesicle formation induced by gp60 activation. Expression of dominant negative Src (dn-Src) and overexpression of wild-type caveolin-1 also prevented gp60-activated endocytosis. Caveolin-1 overexpression resulted in the sequestration of Gαi with the caveolin-1, whereas dn-Src inhibited Gαi binding to caveolin-1. Thus, vesicle formation induced by gp60 and migration of vesicles to the basolateral membrane requires the interaction of gp60 with caveolin-1, followed by the activation of the downstream Gi-coupled Src kinase signaling pathway.
We investigated the function of gp60, an endothelial cell membrane 60-kDa albumin-binding protein localized in caveolae, and the mechanism of its activation in regulating endothelial permeability of albumin. Gp60 organization on the bovine pulmonary microvessel endothelial cell (BPMVEC) surface was punctate as shown by immunofluorescence using an anti-gp60 antibody
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.