NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit prion-like properties. The two enzymatic activities alternate to generate a regular period length of about 24 min. Here we report the expression, cloning, and characterization of a tumor-associated NADH oxidase (tNOX). The cDNA sequence of 1830 bp is located on gene Xq25-26 with an open reading frame encoding 610 amino acids. The activities of the bacterially expressed tNOX oscillate with a period length of 22 min as is characteristic of tNOX activities in situ. The activities are inhibited completely by capsaicin, which represents a defining characteristic of tNOX activity. Functional motifs identified by site-directed mutagenesis within the C-terminal portion of the tNOX protein corresponding to the processed plasma membrane-associated form include quinone (capsaicin), copper and adenine nucleotide binding domains, and two cysteines essential for catalytic activity. Four of the six cysteine to alanine replacements retained enzymatic activity, but the period lengths of the oscillations were increased. A single protein with two alternating enzymatic activities indicative of a time-keeping function is unprecedented in the biochemical literature.
We have studied the ability of histidine-rich glycoprotein (HRG) to neutralize the anticoagulant activity of heparin in plasma and in a purified component clotting assay. Addition of HRG to plasma or to the purified component assay did not neutralize the anticoagulant activity of heparin unless micromolar concentrations of zinc were present. Higher zinc concentrations were required for citrated than for heparinized plasmas due to competition of citrate with HRG for zinc binding. Zinc concentrations as low as 1.25 M revealed HRG to be a powerful competitor of antithrombin for heparin in the purified component assays. HRG binding of heparin also was shown by affinity chromatography of HRG from immobilized heparin in the presence and absence of zinc. In the absence of zinc, HRG was eluted by 0.1 M NaCl, but, in the presence of zinc, elution of HRG required 1.0 M NaCl. Investigation of other divalent cations (copper and magnesium) indicated that augmentation of heparin binding by HRG in the presence of antithrombin was restricted to zinc. The HRG⅐Zn complex effectively competes with antithrombin for heparin, which restricts the availability of heparin to bind antithrombin and allows thrombin-mediated fibrinogenesis to proceed unimpeded. This could be initiated by zinc released from activated platelets.
Phenoxodiol, a synthetic isoflavene with clinical efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated tNOX. Purified recombinant tNOX bound phenoxodiol with high affinity (Kd of 50 nM). The tNOX protein appeared to be both necessary and sufficient for the cancer-specific cytotoxicity of phenoxodiol. Growth inhibition of fibroblasts from embryos of mice expressing a tNOX transgene, but not from wild-type mice, was inhibited by phenoxodiol followed by apoptosis. Both the oxidative and protein disulfide-thiol interchange activities that alternate to generate the complex set of oscillations with a period length of 22 min (24 min for the constitutive counterpart CNOX) that characterize ECTO-NOX proteins respond to phenoxodiol. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked by phenoxodiol. In contrast, the protein disulfidethiol interchange activity measured either by the restoration of activity to scrambled and inactive RNase or from the cleavage of dithiodipyridine (EC50 of 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ECTO-NOX (CNOX) forms of either cancer or noncancer cells were unaffected by phenoxodiol to help explain how the cytotoxic effects of phenoxodiol may be restricted to cancer cells.
Introduction All neoplastic cells express one or more members of a unique family of tumor-associated cell surface ubiquinone (NADH) oxidase proteins with protein disulfide-thiol interchange activity (ENOX2 or tNOX proteins) that are characteristically blocked by quinone site inhibitors with anti-cancer activity. Methods Analyses using two-dimensional gel electrophoresis with detection on western blots using a pan ENOX2 recombinant antibody revealed unique ENOX2 isoforms or unique combinations of isoforms of differing molecular weights and/or isoelectric points in sera of patients with cancers of different cellular or tissue origins. Results and Discussion Isoform presence provides for broad-range cancer detection. The specific patterns and molecular weights of the isoforms present allows for identification of the cell type and/or tissue of origin of the neoplasm. ENOX2 isoform presence and relative amounts are largely independent of stage but may be proportional to tumor burden to provide indications of response to therapy and disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.