Indolicidin, a l3-residue antimicrobial peptide-amide, which is unusually rich in tryptophan and proline, is isolated from the cytoplasmic granules of bovine neutrophils. In this study, the structures of indolicidin in 50% D3-trifluoroethanol and in the absence and presence of SDS and D38-dodecylphosphocholine were determined using NMR spectroscopy. Multiple conformations were found and were shown to be due to different combinations of contact between the two WPW motifs. Although indolicidin is bactericidal and able to permeabilize bacterial membranes, it does not lead to cell wall lysis, showing that there is more than one mechanism of antimicrobial action. The structure of indolicidin in aqueous solution was a globular and amphipathic conformation, differing from the wedge shape adopted in lipid micelles, and these two structures were predicted to have different functions. Indolicidin, which is known to inhibit DNA synthesis and induce filamentation of bacteria, was shown to bind DNA in gel retardation and fluorescence quenching experiments. Further investigations using surface plasmon resonance confirmed the DNA-binding ability and showed the sequence preference of indolicidin. Based on our biophysical studies and previous results, we present a diagram illustrating the DNA-binding mechanism of the antimicrobial action of indolicidin and explaining the roles of the peptide when interacting with lipid bilayers at different concentrations.
Toc34, a 34-kDa integral membrane protein, is a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex, which associates with precursor proteins during protein transport across the chloroplast outer membrane. Here we report the 2.0 A resolution crystal structure of the cytosolic part of pea Toc34 in complex with GDP and Mg2+. In the crystal, Toc34 molecules exist as dimers with features resembling those found in a small GTPase in complex with a GTPase activating protein (GAP). However, gel filtration experiments revealed that dimeric and monomeric forms of Toc34 coexisted in phosphate saline buffer solution at pH 7.2. Mutation of Arg 128, an essential residue for dimerization, to an Ala residue led to the formation of an exclusively monomeric species whose GTPase activity is significantly reduced compared to that of wild type Toc34. These results, together with a number of structural features unique to Toc34, suggest that each monomer acts as a GAP on the other interacting monomer.
The conformational features of endothelin-1 (ET-1) in mixed water/ethylene glycol media have been studied by two-dimensional 1H NMR experiments throughout the pH range 3.2-7.2. At pH less than 5 all backbone NH signals can be observed, and NOESY experiments provided a large set of dipolar cross-peaks. Cross-peak intensities from each experiment (different mixing times and H2O versus D2O) were converted to distance constraints using a novel algorithm (program DISCON) for removing spin diffusion effects and thus obtain cross-rates rather than cross-peak intensities. A set of 168 nonstereospecific distance bounds (average experimental precision, +/- 0.38 A) was used in dynamics simulated annealing refinements. Two consensus structural features were found--a reverse turn at Ser5----Asp8 and an alpha-helical stretch from Lys9 to Cys15; however, after constraint-free minimization, structures generated using XPLOR-1.5, CONGEN, and DISCOVER all violated at least 32% of the bounds by more than 0.2 A, which we ascribe to conformational isomerism. When the constraints were modified to reflect subsequent experimental data and to eliminate constraints that could not be obeyed by any single conformer structure, the relaxed structures still violated at least 15% of this more limited and looser set of constraints. Therefore, a modified procedure for constrained dynamics refinement (using XPLOR-2.1), which allows for conformational isomerism outside of the central helical core region, was developed. This "conformer search procedure" produced structures which fell into five tightly defined conformational clusters. The two most populated clusters correspond to a rotation of the 8,9-amide unit. The conformer which we propose as the major contributor at pH 3.2-5.8 was defined to a backbone rmsd of 0.51 A over residues 1----15. An alternative description of the motional averaging in segments of the endothelin structure as extensive randomization rather than rapid interconversion between a small number of discreet conformers was ruled out by an analysis of NH shift-temperature gradients and exchange rates. This analysis suggests that small delta delta/delta T values need not correlate with H-bonding for conformational mixtures. In ET-1 the greatest motional averaging occurs from Ser2 through Ser5 (not in the C-terminus) and may be so extensive as to approximate a flexible random coil population as high as 30%. The C-terminus shows less rapid and less extensive conformational averaging, but no definitive structures for individual conformers could be derived in the absence of stereospecific constraints. The pharmacological implications of the consensus structural features are discussed.
PmrA, an OmpR/PhoB family response regulator, manages genes for antibiotic resistance. Phosphorylation of OmpR/PhoB response regulator induces the formation of a symmetric dimer in the N-terminal receiver domain (REC), promoting two C-terminal DNA-binding domains (DBDs) to recognize promoter DNA to elicit adaptive responses. Recently, determination of the KdpE–DNA complex structure revealed an REC–DBD interface in the upstream protomer that may be necessary for transcription activation. Here, we report the 3.2-Å-resolution crystal structure of the PmrA–DNA complex, which reveals a similar yet different REC–DBD interface. However, NMR studies show that in the DNA-bound state, two domains tumble separately and an REC–DBD interaction is transiently populated in solution. Reporter gene analyses of PmrA variants with altered interface residues suggest that the interface is not crucial for supporting gene expression. We propose that REC–DBD interdomain dynamics and the DBD–DBD interface help PmrA interact with RNA polymerase holoenzyme to activate downstream gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.