Saccharopolyspora erythraea makes erythromycin, an antibiotic commonly used in human medicine. Unusually, the erythromycin biosynthetic (ery) cluster lacks a pathway-specific regulatory gene. We isolated a transcriptional regulator of the ery biosynthetic genes from S. erythraea and found that this protein appears to directly link morphological changes caused by impending starvation to the synthesis of a molecule that kills other bacteria, i.e., erythromycin. DNA binding assays, liquid and affinity chromatography, MALDI-MS analysis, and de novo sequencing identified this protein (M r ؍ 18 kDa) as the S. erythraea ortholog of BldD, a key regulator of development in Streptomyces coelicolor. Recombinant S. erythraea BldD bound to all five regions containing promoters in the ery cluster as well as to its own promoter, the latter with an order-of-magnitude stronger than to the ery promoters. Deletion of bldD in S. erythraea decreased the erythromycin titer in a liquid culture 7-fold and blocked differentiation on a solid medium. Moreover, an industrial strain of S. erythraea with a higher titer of erythromycin expressed more BldD than a wild-type strain during erythromycin synthesis. Together, these results suggest that BldD concurrently regulates the synthesis of erythromycin and morphological differentiation. The ery genes are the first direct targets of a BldD ortholog to be identified that are positively regulated.cell differentiation ͉ secondary metabolites ͉ BldD
Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA–/– podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.