Key points At the end of pregnancy, the uterus transitions from a quiescent state to a highly contractile state. This transition requires that the uterine (myometrial) smooth muscle cells increase their excitability, although how this occurs is not fully understood. We identified SLO2.1, a potassium channel previously unknown in uterine smooth muscle, as a potential significant contributor to the electrical excitability of myometrial smooth muscle cells. We found that activity of the SLO2.1 channel is negatively regulated by oxytocin via Gαq‐protein‐coupled receptor activation of protein kinase C. This results in depolarization of the uterine smooth muscle cells and calcium entry, which may contribute to uterine contraction. These findings provide novel insights into a previously unknown mechanism by which oxytocin may act to modulate myometrial smooth muscle cell excitability. Our findings also reveal a new potential pharmacological target for modulating uterine excitability. Abstract During pregnancy, the uterus transitions from a quiescent state to a more excitable contractile state. This is considered to be at least partly a result of changes in the myometrial smooth muscle cell (MSMC) resting membrane potential. However, the ion channels controlling the myometrial resting membrane potential and the mechanism of transition to a more excitable state have not been fully clarified. In the present study, we show that the sodium‐activated, high‐conductance, potassium leak channel, SLO2.1, is expressed and active at the resting membrane potential in MSMCs. Additionally, we report that SLO2.1 is inhibited by oxytocin binding to the oxytocin receptor. Inhibition of SLO2.1 leads to membrane depolarization and activation of voltage‐dependent calcium channels, resulting in calcium influx. The results of the present study reveal that oxytocin may modulate MSMC electrical activity by inhibiting SLO2.1 potassium channels.
Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We report an initial analysis of copy number variations (CNVs) in cattle selected for resistance or susceptibility to intestinal nematodes. We performed three array comparative genomic hybridization (CGH) experiments to compare Angus cattle with extreme phenotypes for fecal egg count and serum pepsinogen level. We identified 20 CNVs in total, of which 12 were within known chromosomes harboring or adjacent to gains or losses. About 85% of the CNV identified (17/20) overlapped with cattle CNV regions that were reported recently. Selected CNVs were further validated by independent methods using quantitative PCR (qPCR) and FISH. Pathway analyses indicated that annotated cattle genes within these variable regions are particularly enriched for immune function affecting receptor activities, signal transduction, and transcription. Analysis of transcription factor binding sites (TFBS) within the promoter regions of differentially expressed genes suggested that common transcription factors are probably involved in parasite resistance. These results provide valuable hypotheses for the future study of cattle CNVs underlying economically important health and production traits.
During pregnancy, the uterus transitions from a quiescent state to an excitable, highly contractile state to deliver the fetus. Two important contributors essential for this transition are hormones and ion channels, both of which modulate myometrial smooth muscle cell (MSMC) excitability. Recently, the sodium (Na+) leak channel, nonselective (NALCN), was shown to contribute to a Na+ leak current in human MSMCs, and mice lacking NALCN in the uterus had dysfunctional labor. Microarray data suggested that the proquiescent hormone progesterone (P4) and the procontractile hormone estrogen (E2) regulated this channel. Here, we sought to determine whether P4 and E2 directly regulate NALCN. In human MSMCs, we found that NALCN mRNA expression decreased by 2.3-fold in the presence of E2 and increased by 5.6-fold in the presence of P4. Similarly, E2 treatment decreased, and P4 treatment restored NALCN protein expression. Additionally, E2 significantly inhibited, and P4 significantly enhanced an NALCN-dependent leak current in MSMCs. Finally, we identified estrogen response and progesterone response elements (EREs and PREs) in the NALCN promoter. With the use of luciferase assays, we showed that the PREs, but not the ERE, contributed to regulation of NALCN expression. Our findings reveal a new mechanism by which NALCN is regulated in the myometrium and suggest a novel role for NALCN in pregnancy.
Background/Aims: Uterine contractility is controlled by electrical signals generated by myometrial smooth muscle cells. Because aberrant electrical signaling may cause inefficient uterine contractions and poor reproductive outcomes, there is great interest in defining the ion channels that regulate uterine excitability. In human myometrium, the Na+ leak channel, non-selective (NALCN) contributes to a gadolinium-sensitive, Na+-dependent leak current. The aim of this study was to determine the role of NALCN in regulating uterine excitability and examine its involvement in parturition. Methods: Wildtype C57BL/6J mice underwent timed-mating and NALCN uterine expression was measured at several time points across pregnancy including pregnancy days 7, 10, 14, 18 and 19. Sharp electrode current clamp was used to measure uterine excitability at these same time points. To determine NALCN’s contribution to myometrial excitability and pregnancy outcomes, we created smooth-muscle-specific NALCN knockout mice by crossing NALCNfx/fx mice with myosin heavy chain Cre (MHCCreeGFP) mice. Parturition outcomes were assessed by observation via surveillance video recording cre control, flox control, smNALCN+/-, and smNALCN-/- mice. Myometrial excitability was compared between pregnancy day 19 flox controls and smNALCN-/- mice. Results: We found that in the mouse uterus, NALCN protein levels were high early in pregnancy, decreased in mid and late pregnancy, and then increased in labor and postpartum. Sharp electrode current clamp recordings of mouse longitudinal myometrial samples from pregnancy days 7, 10, 14, 18, and 19 revealed day-dependent increases in burst duration and interval and decreases in spike density. NALCN smooth muscle knockout mice had reduced myometrial excitability exemplified by shortened action potential bursts, and an increased rate of abnormal labor, including prolonged and dysfunctional labor. Conclusions: Together, our findings demonstrate that the Na+ conducting channel NALCN contributes to the myometrial action potential waveform and is important for successful labor outcomes.
Summary Depolarization of the myometrial smooth muscle cell (MSMC) resting membrane potential is necessary for the uterus to transition from a quiescent state to a contractile state. The molecular mechanisms involved in this transition are not completely understood. Here, we report that a coupled system between the Na + -activated K + channel (SLO2.1) and the non-selective Na + leak channel (NALCN) determines the MSMC membrane potential. Our data indicate that Na + entering through NALCN acts as an intracellular signaling molecule that activates SLO2.1. Potassium efflux through SLO2.1 hyperpolarizes the membrane. A decrease in SLO2.1/NALCN activity induces membrane depolarization, triggering Ca 2+ entry through voltage-dependent Ca 2+ channels and promoting contraction. Consistent with functional coupling, our data show that NALCN and SLO2.1 are in close proximity in human MSMCs. We propose that these arrangements of SLO2.1 and NALCN permit these channels to functionally regulate MSMC membrane potential and cell excitability and modulate uterine contractility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.