The microscopic states and performance of organic solar cell are investigated theoretically to explore the effect of the carrier mobility. With Ohmic contacts between the semiconductor and the metal electrodes there are two origins of carriers in the semiconductor: the photocarriers generated by photon absorption and the dark carriers diffused from the electrodes. The power efficiency of the solar cell is limited by the recombination of a carrier with either the photocarrier or a dark carrier. Near the short-circuit condition the photocarrier recombination in the semiconductor bulk decreases as the mobility increases. Near the open-circuit condition the dark carrier recombination increases with the mobility. These two opposite effects balance with one another, resulting in an optimal mobility about 10 −2 cm 2 / V s which gives the highest power conversion efficiency. The balance of the electron and hole mobilities are not necessary to maintain the optimal efficiency also because of the balance of the photocarrier and dark carrier recombination. The efficiency remains about the same as one carrier mobility is fixed at 10 −2 cm 2 / V s while the other one varies from 10 −1 to 10 −3 cm 2 / V s. For solar cell with a Schottky barrier between the semiconductor and the metal electrode there is no dark carrier recombination. The efficiency therefore always increases with the mobility.
The carrier recombination in organic solar cells is investigated by numerical modeling to understand the weak dependence of the open-circuit voltage on the workfunction of the electrodes. In Ohmic contact structures, photocarriers recombine predominantly with dark carriers diffused from the electrode into the semiconductor. Such dark carrier recombination becomes the main limit of power conversion efficiency and open-circuit voltage. For a given semiconductor decreasing the workfunction difference of the electrodes reduces simultaneously the dark carrier recombination and the flat band voltage. The balance between these two opposite factors gives a nearly constant open-circuit voltage. In an ideal bilayer structure there is no dark carrier recombination and the efficiency is demonstrated to be 60% higher than single layer blend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.