We consider the problem of sequential graph topology change-point detection from graph signals. We assume that signals on the nodes of the graph are regularized by the underlying graph structure via a graph filtering model, which we then leverage to distill the graph topology change-point detection problem to a subspace detection problem. We demonstrate how prior information on the spectral signature of the post-change graph can be incorporated to implicitly denoise the observed sequential data, thus leading to a natural CUSUM-based algorithm for change-point detection. Numerical experiments illustrate the performance of our proposed approach, particularly underscoring the benefits of (potentially noisy) prior information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.