BackgroundRobotic-assisted laparoscopic surgery (RALS) is evolving as an important surgical approach in the field of colorectal surgery. We aimed to evaluate the learning curve for RALS procedures involving resections of the rectum and rectosigmoid.MethodsA series of 50 consecutive RALS procedures were performed between August 2008 and September 2009. Data were entered into a retrospective database and later abstracted for analysis. The surgical procedures included abdominoperineal resection (APR), anterior rectosigmoidectomy (AR), low anterior resection (LAR), and rectopexy (RP). Demographic data and intraoperative parameters including docking time (DT), surgeon console time (SCT), and total operative time (OT) were analyzed. The learning curve was evaluated using the cumulative sum (CUSUM) method.ResultsThe procedures performed for 50 patients (54% male) included 25 AR (50%), 15 LAR (30%), 6 APR (12%), and 4 RP (8%). The mean age of the patients was 54.4 years, the mean BMI was 27.8 kg/m2, and the median American Society of Anesthesiologists (ASA) classification was 2. The series had a mean DT of 14 min, a mean SCT of 115.1 min, and a mean OT of 246.1 min. The DT and SCT accounted for 6.3% and 46.8% of the OT, respectively. The SCT learning curve was analyzed. The CUSUMSCT learning curve was best modeled as a parabola, with equation CUSUMSCT in minutes equal to 0.73 × case number2 − 31.54 × case number − 107.72 (R = 0.93). The learning curve consisted of three unique phases: phase 1 (the initial 15 cases), phase 2 (the middle 10 cases), and phase 3 (the subsequent cases). Phase 1 represented the initial learning curve, which spanned 15 cases. The phase 2 plateau represented increased competence with the robotic technology. Phase 3 was achieved after 25 cases and represented the mastery phase in which more challenging cases were managed.ConclusionsThe three phases identified with CUSUM analysis of surgeon console time represented characteristic stages of the learning curve for robotic colorectal procedures. The data suggest that the learning phase was achieved after 15 to 25 cases.
Glioblastoma is the most common yet most lethal of primary brain cancers with a one-year post-diagnosis survival rate of 65% and a five-year survival rate of barely 5%. Recently the U.S. Food and Drug Administration approved a novel fourth approach (in addition to surgery, radiation therapy, and chemotherapy) to treating glioblastoma; namely, tumor treating fields (TTFields). TTFields involves the delivery of alternating electric fields to the tumor but its mechanisms of action are not fully understood. Current theories involve TTFields disrupting mitosis due to interference with proper mitotic spindle assembly. We show that TTFields also alters cellular membrane structure thus rendering it more permeant to chemotherapeutics. Increased membrane permeability through the imposition of TTFields was shown by several approaches. For example, increased permeability was indicated through increased bioluminescence with TTFields exposure or with the increased binding and ingress of membrane-associating reagents such as Dextran-FITC or ethidium D or with the demonstration by scanning electron microscopy of augmented number and sizes of holes on the cellular membrane. Further investigations showed that increases in bioluminescence and membrane hole production with TTFields exposure disappeared by 24 h after cessation of alternating electric fields thus demonstrating that this phenomenom is reversible. Preliminary investigations showed that TTFields did not induce membrane holes in normal human fibroblasts thus suggesting that the phenomenom was specific to cancer cells. With TTFields, we present evidence showing augmented membrane accessibility by compounds such as 5-aminolevulinic acid, a reagent used intraoperatively to delineate tumor from normal tissue in glioblastoma patients. In addition, this mechanism helps to explain previous reports of additive and synergistic effects between TTFields and other chemotherapies. These findings have implications for the design of combination therapies in glioblastoma and other cancers and may significantly alter standard of care strategies for these diseases.
Endogenous biomarkers remain at the forefront of early disease detection efforts, but many lack the sensitivities and specificities necessary to influence disease management. Inspired by emerging adoptive cell transfer immunotherapies and the natural migration of immune cells to pathology, here we describe a new class of cell-based in vivo sensors for ultrasensitive disease detection. In our proof of concept, we perform adoptive transfer of syngeneic macrophages which were engineered to produce a synthetic biomarker upon adopting a 'tumor-associated' metabolic profile. Notably, the macrophage sensor detected tumors as small as 25-50 mm 3 , effectively tracked the immunological response in two models of acute inflammation, and was more sensitive than both protein and nucleic acid cancer biomarkers. This technology establishes a clinically translatable approach to early cancer detection and provides a conceptual framework for the use of engineered immune cells for the monitoring of many disease states in addition to cancer.
The SILC procedure is a safe and feasible method for benign and malignant diseases requiring a right hemicolectomy. This method results in a low complication rate and a short postoperative hospital stay.
IMPORTANCE Magnetic resonance imaging (MRI) with targeted biopsy is an appealing alternative to systematic 12-core transrectal ultrasonography (TRUS) biopsy for prostate cancer diagnosis, but has yet to be widely adopted.OBJECTIVE To determine whether MRI with only targeted biopsy was noninferior to systematic TRUS biopsies in the detection of International Society of Urological Pathology grade group (GG) 2 or greater prostate cancer. DESIGN, SETTING, AND PARTICIPANTSThis multicenter, prospective randomized clinical trial was conducted in 5 Canadian academic health sciences centers between January 2017 and November 2019, and data were analyzed between January and March 2020. Participants included biopsy-naive men with a clinical suspicion of prostate cancer who were advised to undergo a prostate biopsy. Clinical suspicion was defined as a 5% or greater chance of GG2 or greater prostate cancer using the Prostate Cancer Prevention Trial Risk Calculator, version 2. Additional criteria were serum prostate-specific antigen levels of 20 ng/mL or less (to convert to micrograms per liter, multiply by 1) and no contraindication to MRI. INTERVENTIONS Magnetic resonance imaging-targeted biopsy (MRI-TB) only if a lesion with aProstate Imaging Reporting and Data System (PI-RADS), v 2.0, score of 3 or greater was identified vs 12-core systematic TRUS biopsy. MAIN OUTCOME AND MEASURESThe proportion of men with a diagnosis of GG2 or greater cancer. Secondary outcomes included the proportion who received a diagnosis of GG1 prostate cancer; GG3 or greater cancer; no significant cancer but subsequent positive MRI results and/or GG2 or greater cancer detected on a repeated biopsy by 2 years; and adverse events. RESULTSThe intention-to-treat population comprised 453 patients (367 [81.0%] White, 19 [4.2%] African Canadian, 32 [7.1%] Asian, and 10 [2.2%] Hispanic) who were randomized to undergo TRUS biopsy (226 [49.9%]) or ), of which 421 (93.0%) were evaluable per protocol. A lesion with a PI-RADS score of 3 or greater was detected in 138 of 221 men (62.4%) who underwent MRI, with 26 (12.1%), 82 (38.1%), and 30 (14.0%) having maximum PI-RADS scores of 3, 4, and 5, respectively. Eighty-three of 221 men who underwent MRI-TB (37%) had a negative MRI result and avoided biopsy. Cancers GG2 and greater were identified in 67 of 225 men (30%) who underwent TRUS biopsy vs 79 of 227 (35%) allocated to MRI-TB (absolute difference, 5%, 97.5% 1-sided CI, −3.4% to ϱ; noninferiority margin, −5%). Adverse events were less common in the MRI-TB arm. Grade group 1 cancer detection was reduced by more than half in the MRI arm (from 22% to 10%; risk difference, −11.6%; 95% CI, −18.2% to −4.9%).CONCLUSIONS AND RELEVANCE Magnetic resonance imaging followed by selected targeted biopsy is noninferior to initial systematic biopsy in men at risk for prostate cancer in detecting GG2 or greater cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.