Most of mankind’s living and workspace have been or going to be blended with smart technologies like the Internet of Things. The industrial domain has embraced automation technology, but agriculture automation is still in its infancy since the espousal has high investment costs and little commercialization of innovative technologies due to reliability issues. Machine vision is a potential technique for surveillance of crop health which can pinpoint the geolocation of crop stress in the field. Early statistics on crop health can hasten prevention strategies such as pesticide, fungicide applications to reduce the pollution impact on water, soil, and air ecosystems. This paper condenses the proposed machine vision relate research literature in agriculture to date to explore various pests, diseases, and weeds detection mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.