Abstract-One of the principal underlying assumptions of current approaches to the analysis of heterogeneous cellular networks (HetNets) with random spatial models is the uniform distribution of users independent of the base station (BS) locations. This assumption is not quite accurate, especially for user-centric capacity-driven small cell deployments where lowpower BSs are deployed in the areas of high user density, thus inducing a natural correlation in the BS and user locations. In order to capture this correlation, we enrich the existing K-tier Poisson Point Process (PPP) HetNet model by considering user locations as Poisson Cluster Process (PCP) with the BSs at the cluster centers. In particular, we provide the formal analysis of the downlink coverage probability in terms of a general density functions describing the locations of users around the BSs. The derived results are specialized for two cases of interest: (i) Thomas cluster process, where the locations of the users around BSs are Gaussian distributed, and (ii) Matérn cluster process, where the users are uniformly distributed inside a disc of a given radius. Tight closed-form bounds for the coverage probability in these two cases are also derived. Our results demonstrate that the coverage probability decreases as the size of user clusters around BSs increases, ultimately collapsing to the result obtained under the assumption of PPP distribution of users independent of the BS locations when the cluster size goes to infinity. Using these results, we also handle mixed user distributions consisting of two types of users: (i) uniformly distributed, and (ii) clustered around certain tiers.
The growing complexity of heterogeneous cellular networks (HetNets) has necessitated a variety of user and base station (BS) configurations to be considered for realistic performance evaluation and system design. This is directly reflected in the HetNet simulation models proposed by standardization bodies, such as the third generation partnership project (3GPP). Complementary to these simulation models, stochastic geometry-based approach, modeling the locations of the users and the K tiers of BSs as independent and homogeneous Poisson point processes (PPPs), has gained prominence in the past few years. Despite its success in revealing useful insights, this PPP-based K-tier HetNet model is not rich enough to capture spatial coupling between user and BS locations that exists in real-world HetNet deployments and is included in 3GPP simulation models. In this paper, we demonstrate that modeling a fraction of users and arbitrary number of BS tiers alternatively with a Poisson cluster process (PCP) captures the aforementioned coupling, thus bridging the gap between the 3GPP simulation models and the PPP-based analytic model for HetNets. We further show that the downlink coverage probability of a typical user under maximum signal-to-interference-ratio (SIR) association can be expressed in terms of the sum-product functionals over PPP, PCP, and its associated offspring point process, which are all characterized as a part of our analysis. We also show that the proposed model converges to the PPP-based HetNet model as the cluster size of the PCPs tends to infinity. Finally, we specialize our analysis based on general PCPs for Thomas and Matérn cluster processes. Special instances of the proposed model closely resemble the different configurations for BS and user locations considered in 3GPP simulations. Index TermsHeterogeneous cellular network, Poisson point process, Poisson cluster process, Matérn cluster process, Thomas cluster process, 3GPP.The authors are with Wireless@VT,
With the emergence of integrated access and backhaul (IAB) in the fifth generation (5G) of cellular networks, backhaul is no longer just a passive capacity constraint in cellular network design. In fact, this tight integration of access and backhaul is one of the key ways in which 5G millimeter wave (mmwave) heterogeneous cellular networks (HetNets) differ from traditional settings where the backhaul network was designed independently from the radio access network (RAN). With the goal of elucidating key design trends for this new paradigm, we develop an analytical framework for a two-tier HetNet with IAB where the macro base stations (MBSs) provide mm-wave backhaul to the small cell base stations (SBSs). For this network, we derive the downlink rate coverage probability for two types of resource allocations at the MBS: 1) integrated resource allocation (IRA): where the total bandwidth (BW) is dynamically split between access and backhaul, and 2) orthogonal resource allocation (ORA):where a static partition is defined for the access and backhaul communications. Our analysis concretely demonstrates that offloading users from the MBSs to SBSs may not provide similar rate improvements in an IAB setting as it would in a HetNet with fiber-backhauled SBS. Our analysis also shows that it is not possible to improve the user rate in an IAB setting by simply densifying the SBSs due to the bottleneck on the rate of wireless backhaul links between MBS and SBS. Index TermsIntegrated access and backhaul, heterogeneous cellular network, mm-wave, 3GPP, wireless backhaul, stochastic geometry.The authors are with Wireless@VT,
With the increasing network densification, it has become exceedingly difficult to provide traditional fiber backhaul access to each cell site, which is especially true for small cell base stations (SBSs). The increasing maturity of millimeter wave (mm-wave) communication has opened up the possibility of providing high-speed wireless backhaul to such cell sites. Since mm-wave is also suitable for access links, the third generation partnership project (3GPP) is envisioning an integrated access and backhaul (IAB) architecture for the fifth generation (5G) cellular networks in which the same infrastructure and spectral resources will be used for both access and backhaul. In this paper, we develop an analytical framework for IAB-enabled cellular network using which its downlink rate coverage probability is accurately characterized. Using this framework, we study the performance of three backhaul bandwidth (BW) partition strategies: 1) equal partition: when all SBSs obtain equal share of the backhaul BW; 2) instantaneous load-based partition: when the backhaul BW share of an SBS is proportional to its instantaneous load; and 3) average load-based partition: when the backhaul BW share of an SBS is proportional to its average load. Our analysis shows that depending on the choice of the partition strategy, there exists an optimal split of access and backhaul BW for which the rate coverage is maximized. Further, there exists a critical volume of cell-load (total number of users) beyond which the gains provided by the IAB-enabled network disappear and its performance converges to that of the traditional macro-only network with no SBSs.Index Terms-Integrated access and backhaul, heterogeneous cellular network, mm-wave, 3GPP, wireless backhaul.
Owing to its flexibility in modeling real-world spatial configurations of users and base stations (BSs), the Poisson cluster process (PCP) has recently emerged as an appealing way to model and analyze heterogeneous cellular networks (HetNets). Despite its undisputed relevance to HetNets -corroborated by the models used in industry -the PCP's use in performance analysis has been limited. This is primarily because of the lack of analytical tools to characterize performance metrics such as the coverage probability of a user connected to the strongest BS. In this paper, we develop an analytical framework for the evaluation of the coverage probability, or equivalently the complementary cumulative density function (CCDF) of signal-to-interference-and-noise-ratio (SINR), of a typical user in a K-tier HetNet under a max power-based association strategy, where the BS locations of each tier follow either a Poisson point process (PPP) or a PCP. The key enabling step involves conditioning on the parent PPPs of all the PCPs which allows us to express the coverage probability as a product of sum-product and probability generating functionals (PGFLs) of the parent PPPs. In addition to several useful insights, our analysis provides a rigorous way to study the impact of the cluster size on the SINR distribution, which was not possible using existing PPP-based models. Index TermsHeterogeneous cellular network, 3GPP, Poisson cluster process, Thomas cluster process, Matérn cluster process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.