The commercially available unmanned aerial vehicles are not good enough for search and rescue flight at high altitudes. This is because as the altitude increases, the density of air decreases which affects the thrust generation of the UAV. The objective of this research work is to design thrust optimized blade for an altitude range of 3,000–5,000 m with a density of air 0.7364 kg/m3, respectively, and perform thrust analysis. The property of aluminum alloy 1,060 being lightweight is chosen for designing and testing of blade. The blade element theory-based design and analysis code was developed, and user-friendly aerodynamic inputs were used to obtain the desired outputs. The geometry designed for an altitude range of 3,000-5,000 m faced the total stress of 6.0 MPa which was at 70% of the blade span. This stress is within the limit of yield strength of the aluminum alloy, 28 MPa. The modal analysis shows the first natural frequency occurs at around 12,000 RPM which is safe for operating the blade at 0-5,000 RPM. Experimental analysis of the blade gave a thrust of 0.92 N at 2,697 RPM at 1,400 m. The analytical solution for thrust with the same conditions was 1.7 N with 85.6% efficiency. The validation of experimental results has been done by the CFD analysis. The CFD analysis was performed in ANSYS CFX which gave a thrust value of 2.27 N for the same boundary conditions. Thus, the blade designed for high altitude SAR UAV is structurally safe to operate in 0-5,000 RPM range, and its use in search missions could save many lives in the Himalayas.
Turbine blade tip clearance plays major role in smooth running of axial turbines. The turbine blade clearance contributes 20-40% of total loss in gas turbine. In Rolls Royce MT2 Turbine with 2% tip to span clearance ratio, tip clearance accounts for 40% of total losses. Turbine blade clearance is necessary as the turbine blade operates at very high temperature up to 1700 ºC and very high centrifugal load. Small turbine tip clearance may forbid expansion of turbine blade which will result in turbine tip rubbing with the casing. High pressure turbine blade experiences high thermal and centrifugal stress. The objective of this paper is to study the individual and combined effect of these stress. The material used for analysis is cast based nickel alloy IN-738. The melting range of this alloy is 1230-1315 ºC with thermal expansion coefficient of 15.39E-6 per ºC. The turbine blade geometry with height 120 mm is used for analysis. The Mathematical modelling of above geometry shows that the centrifugal force with rotation velocity 100 rad/s produces 0.00252424 mm elongation and combined thermal-centrifugal loading produces 1.46520576 mm elongation. The results form ANSYS is used for verification and the elongation due to centrifugal stress is 0.0014885 mm and combined stress produces elongation of 1.2608 mm. The total elongation from analytical method and ANSYS are similar. It shows that the effect due to centrifugal force on turbine blade is less compared to thermal effect. For operating condition of 816 ºC temperature and 100 rad/s rotational velocity, the overall stress contributes around 1.22 % elongation of turbine blade span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.