In this paper, two intelligent techniques for a two‐wheeled differential mobile robot are designed and presented: A smart PID optimized neural networks based controller (SNNPIDC) and a PD fuzzy logic controller (PDFLC). Basically, mobile robots are required to work and navigate under exigent circumstances where the environment is hostile, full of disturbances such as holes and stones. The robot navigation leads to an autonomous decision making to overcome an obstacle and/or to stop the engine to protect it. In fact, the actuators that drive the robot should in no way be damaged and should stop to change direction in case of insurmountable disturbances. In this context, two controllers are implemented and a comparative study is carried out to demonstrate the effectiveness of the proposed approaches. For the first one, neural networks are used to optimize the parameters of a PID controller and for the second a fuzzy inference system type Mamdani based controller is adopted. The goal is to implement control algorithms for safe robot navigation while avoiding damage to the motors. In these two control cases, the smart robot has to quickly perform tasks and adapt to changing environment conditions while ensuring stability and accuracy and must be autonomous with regards to decision making. Simulations results aren't done in real environments, but are obtained with the Matlab/Simulink environment in which holes and stones are modeled by different load torques and are applied as disturbances on the mobile robot environment. These simulation results and the robot performances are satisfactory and are compared to a PID controller in which parameters are tuned by the Ziegler–Nichols tuning method. The applied methods have proven to be highly robust.
In this paper a full approach of modeling and intelligent control of a four rotor unmanned air vehicle (UAV) known as quad-rotor aircraft is presented. In fact, a PID on-line optimized Neural Networks Approach (PID-NN) is developed to be applied to angular trajectories control of a quad-rotor. Whereas, PID classical controllers are dedicated for the positions, altitude and speed control. The goal of this work is to concept a smart Self-Tuning PID controller, for attitude angles control, based on neural networks able to supervise the quad-rotor for an optimized behavior while tracking a desired trajectory. Many challenges could arise if the quad-rotor is navigating in hostile environments presenting irregular disturbances in the form of wind modeled and applied to the overall system. The quad-rotor has to quickly perform tasks while ensuring stability and accuracy and must behave rapidly with regards to decision making facing disturbances. This technique offers some advantages over conventional control methods such as PID controller. Simulation results are founded on a comparative study between PID and PID-NN controllers based on wind disturbances. These later are applied with several degrees of strength to test the quad-rotor behavior and stability. These simulation results are satisfactory and have demonstrated the effectiveness of the proposed PD-NN approach. In fact, the proposed controller has relatively smaller errors than the PD controller and has a better capability to reject disturbances. In addition, it has proven to be highly robust and efficient face to turbulences in the form of wind disturbances.
The navigation of autonomous mobile robots has in recent times gained interest from many researchers in different areas such as the industrial, agricultural, and military sectors. This paper aims at carefully investigating two advanced types of approaches for guiding a non‐holonomic mobile robot to navigate in an environment area cluttered with static obstacles. Firstly, a Fuzzy logic controller (FLC) was designed, using trapezoidal shape Membership functions (MF's). Secondly, an Adaptive neuro fuzzy inference system (ANFIS) controller was used to optimize the results obtained from trapezoidal fuzzy controller. To validate the feasibility and effectiveness of the proposed models, V‐REP and MATLAB software are used. A comparative evaluation is, then, done on the basis of speed. The simulations results showed that the mobile robot could navigate successfully into maze environment with both proposed approaches but ANFIS controller provided better results in comparison to fuzzy controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.