The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to the extraction of dependencies between terms. In this paper, we present a novel approach for mining knowledge supporting query expansion that is based on association rules. The key feature of our approach is a better tradeoff between the size of the mining result and the conveyed knowledge. Thus, our association rules mining method implements results from Galois connection theory and compact representations of rules sets in order to reduce the huge number of potentially useful associations. An experimental study has examined the application of our approach to some real collections, whereby automatic query expansion has been performed. The results of the study show a significant improvement in the 210 J Intell Inf Syst (2012) 39:209-247 performances of the information retrieval system, both in terms of recall and precision, as highlighted by the carried out significance testing using the Wilcoxon test.
The paper presents a new projection operator for graphs, named AC-projection, which exhibits good complexity properties as opposed to the graph isomorphism (螛-subsumption) operator typically used in graph mining. We study the size of the search space and some practical properties of the projection operator. These properties give us a specialization algorithm using simple local operations. Then we prove experimentally that we can achieve an important performance gain (polynomial complexity projection) without or with non-significant loss of discovered patterns quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.