The emergence of relatively recent date (1982) in the arsenal of methods to cover soft tissue defects, perforator flap quickly reached top choices surgeons from almost all surgical specialties. Unfortunately not as fast it could move in the direction of understanding and knowledge of physiology and dynamics of such flaps, especially in the venous drainage4. Those who practice it are still seeking ways of becoming more efficient preoperative detection of perforator vessels, for finding ways to mitigate the suffering of the vein which, unfortunately, is still quite a few case’s.
That’s why the creation of experimental models to answer all these requirements was a major concern of specialists. But since there is no perfect animal model similar to human anatomy and physiology generally requires developing more experimental models. We aimed to develop an experimental model in pig, the animal relatively less demanding in terms of accommodation and feeding, but is an easy omnivorous compared with a real “eating machine” which, because it grows and gain weight very quickly; this is important in terms of experimental and especially in terms of research in the area of flaps, so that they may not be suitable for longer periods of 4-6 weeks. Pig is one of the best experimental animal models, especially for research in the area of flap. Although pigs and humans among numerous differences exist in terms of vascular, reflected especially in the microcirculation, the rest of anatomical characteristics have many similarities to those in the body uman.
First, the pig has a skin covered with relatively little hair, pink - so easy to see changes in vascular territory; skin is largely fixed and intimate attachment to the subcutaneous cellular tissue, like the human body. Although the skin is thicker and on average less vascularized and shows some differences in terms of the microcirculation, its vasculature, as the sequence of wound healing processes is also similar. Among the most obvious differences are: this paniculata carnosus in some regions, namely the trunk; present in the skin and subcutaneous tissue of the more numerous small perforator vessels, except for anterolateral trunk, such that the number of perforator vessels is similar in humans and pigs; the scapular-humeral articulation joints, as in areas adjacent to the anterior and posterior midlines the skin is very mobile and is vascularized by large vessels with a special distribution; contrary to the situation in man, pig superior deep epigastric artery territory is much larger than the inferior deep epigastric artery.
Considering the above mentioned and the experience of other authors who have developed a number of models of axial flaps (based on internal thoracic penetrating the system, the deep iliac circumflex artery etc.), muscles, musculo-cutaneous flaps, our research team has directed attention to the study of cutaneous and fascio-cutaneous perforator flaps, deepening the results of previous studies and trying to develop new models applicable to humans.