On the basis of optical difference spectra, lactoperoxidase (LPO) was shown to form a 1:1 complex with aromatic donor molecules: resorcinol, hydroquinone, phenol, p-cresol, guaiacol, aniline, and benzohydroxamic acid. As compared with horseradish peroxidase (HRP), the values of the dissociation constant, Kd, of LPO-donor complexes were found to be 4-720-fold larger and were not greatly changed in the presence of KCN and by changes in pH in the range 4-9. The apparent enthalpy and entropy of the binding reactions were found to be -13 kJ mol-1 and -29 J mol-1 K-1, respectively, somewhat smaller (in absolute value) than the corresponding values of HRP. The difference spectra of LPO-donor complexes resembled each other, in contrast to the case of HRP, and the bindings of the donors to LPO occurred in a competitive fashion between the donors. Incubation of LPO with phenylhydrazine and hydrogen peroxide markedly depressed donor binding, the intensity of the Soret band, and the catalytic activity, probably as the result of formation of meso-phenyl derivatives of the heme. These findings suggest that the binding of aromatic donors to LPO occurs at a specific site, probably near the heme edge, where the electron transfer in the peroxidase reaction may take place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.