Heparin was immobilized onto segmented polyurethane-urea surfaces (Biomer) using hydrophilic poly(ethylene oxide) spacers of different chain lengths. The use of the hydrophilic spacer, poly(ethylene oxide), reduces protein adsorption and subsequent platelet adhesion on the surface. In addition, the bioactivity of the immobilized heparin is enhanced by the incorporation of these spacers. Immobilized heparin bioactivity is shown to be a function of PEO spacer length. Use of hydrophilic PEO spacers demonstrates that immobilized heparin's bioactivity is consistently higher than that of the C6 alkyl spacer, but heparin-immobilized surfaces demonstrate no chain length effect on platelet adhesion, even though they show less platelet adhesion compared to Biomer controls. In the case of PEO-grafted surfaces, platelet adhesion is decreased compared to Biomer controls, and C6 alkyl spacer-grafted surfaces, and exhibits a minimum at PEO 1000. In ex vivo A-A shunt experiments under low flow and low shear conditions, all heparinized surfaces exhibit significant prolongation of occlusion times compared to Biomer controls, indicating an ability of immobilized heparin to inhibit thrombosis in whole blood.
The DuraHeart was able to provide safe and reliable long-term circulatory support with an improved survival and an acceptable adverse event rate in advanced heart failure patients who were eligible for transplantation.
HEMA/styrene (HEMA/STY) block copolymers and poly(ethylene oxide) 4,000 M.W. (PEO4K) grafted Biomer (B-PEO4K) surfaces have been synthesized, characterized, and evaluated as blood-contacting materials. These surfaces have demonstrated improved blood compatibility, compared to Biomer, in in vitro and ex vivo experiments. Biomer vascular grafts (6 mm I.D. 7 cm in length) were fabricated by a dip coating process. The luminal surface was modified either with PEO grafting, HEMA/STY coating, or Biomer coating (control). These surface-modified grafts were implanted in the abdominal aortas of dogs and evaluated for graft patency and protein adsorption. Surface protein layer thickness was measured by transmission electron microscopy (TEM). B-PEO4K and Biomer showed thick multilayers of adsorbed proteins (1000-2000 A) after 3 weeks to 1 month implantation. In contrast, HEMA/STY only showed a monolayer protein thickness (less than 200 A), even after 3 months. Visualization of adsorbed plasma proteins (albumin, IgG, and fibrinogen) was performed with scanning electron microscopy (SEM)/TEM using an immunogold double antibody technique. The pattern of protein distribution showed high concentrations of fibrinogen and IgG, and less albumin adsorbed onto Biomer and B-PEO4K. In contrast, HEMA/STY showed a patchy protein distribution pattern with high concentrations of albumin and IgG, and relatively less fibrinogen. Adsorbed monolayer patterns showed improved compatibility over multilayered proteins. The Biomer and B-PEO4K grafts occluded within 1 month, while HEMA/STY grafts were patent for over 3 months. The thin and stable adsorbed protein layer on HEMA/STY surfaces may be associated with the microdomain structures of the surface, and will play an important role in long-term in vivo blood compatibility. This manuscript will evaluate the long-term in vivo performance of these polymers, analyze the extent of protein adsorption onto the surfaces, and correlate protein layer thickness to the thrombogenicity of the polymer surfaces.
This article describes a technique offering indirect measurements of pump pressure differential and flow with certain accuracy independent of changes in blood viscosity. This technique is based on noninvasive measurements of the motor current and rotation speed using the physical model equations of the centrifugal pump system. Blood viscosity included in the coefficients of the dynamic equations is first estimated, and then substitution of the estimated viscosity into the steady equations of the model provides pump flow and pressure differential. In vitro tests using a Capiox pump showed a sufficient linear correlation between actual values and their estimates for pressure differential and pump flow. An in vivo test using a 45 kg sheep showed that the proposed algorithm needs robustness for the convergence of estimates of viscosity. An overall evaluation, however, of the developed algorithm/model showed indications of success in terms of efficient computation and modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.