Hyperspectral imaging (HSI) provides more detailed information than red-green-blue (RGB) imaging, and therefore has potential applications in computer-aided pathological diagnosis. This study aimed to develop a pattern recognition method based on HSI, called hyperspectral analysis of pathological slides based on stain spectrum (HAPSS), to detect cancers in hematoxylin and eosin-stained pathological slides of pancreatic tumors. The samples, comprising hyperspectral cubes of 420-750 nm, were harvested for HSI and tissue microarray (TMA) analysis. As a result of conducting HAPSS experiments with a support vector machine (SVM) classifier, we obtained maximal accuracy of 94%, a 14% improvement over the widely used RGB images. Thus, HAPSS is a suitable method to automatically detect tumors in pathological slides of the pancreas.
ObjectiveAtrial functional mitral regurgitation (A-FMR) has been suggested as a new aetiology of functional MR (MR); however, its prognosis and prognostic predictors are not fully elucidated. Aim of this study was to investigate the prognosis and prognostic predictors of A-FMR in comparison with ventricular functional MR (V-FMR).MethodsThree hundred and seventy-eight consecutive patients with moderate-to-severe or severe functional MR were studied. Functional MR was classified into V-FMR (N=288) and A-FMR (N=90) depending on the alterations of left ventricle (LV) or left atrium (LA) along with clinical context and diagnosis of ischaemic heart disease or cardiomyopathy.ResultsDuring a median follow-up of 4.1 (2.0–6.7) years, all-cause mortality, cardiovascular mortality and heart failure (HF) hospitalisation occurred in 98 (26%), 81 (21%) and 177 (47%) patients, respectively, and rates of these events and the composite end point of all-cause mortality and HF hospitalisation were consistently higher in V-FMR than A-FMR (unadjusted HR 1.762 (95% CI 1.250 to 2.438), p<0.001; adjusted HR 1.654 (95% CI 1.027 to 2.664), p=0.038, for the composite end point). Further analysis showed different prognostic predictors between V-FMR and A-FMR; while age and LA volume index were independent prognostic predictors of both V-FMR and A-FMR, systolic blood pressure and B-type natriuretic peptide were also those of V-FMR, and estimated glomerular filtration rate, LV end-systolic dimension and tricuspid regurgitation were also those of A-FMR.ConclusionsThe prognosis of V-FMR was significantly worse than that of A-FMR, and prognostic predictors were different between V-FMR and A-FMR. Our study suggests the importance of discriminating A-FMR and V-FMR, and that different treatment strategies may be considered for each aetiology.
Tissue amino acid profiles depend on the cell types and extracellular components that constitute the tissue, and their functions and activities. We aimed to characterize the tissue amino acid profiles in several types of pancreatic tumors and lesions. We examined tissue amino acid profiles in 311 patients with pancreatic tumors or lesions. We used newly developed LC-MS/MS methods to obtain the profiles, which were compared with clinicopathological data. Each tumor or lesion presented a characteristic tissue amino acid profile. Certain amino acids were markedly altered during the multistep pancreatic carcinogenesis and pancreatic ductal adenocarcinoma (PDAC) progression. A tissue amino acid index (TAAI) was developed based on the amino acids that were notably changed during both carcinogenesis and cancer progression. Univariate and multivariate survival analyses revealed that PDAC patients with a high TAAI exhibited a significantly shorter survival rate, and these findings were validated using a second cohort. We suggest that tissue amino acid profiles are characteristic for normal tissue type, tumor histological type, and pathological lesion, and are representative of the cancer grade or progression stage in multistep carcinogenesis and of malignant characteristics. The TAAI could serve as an independent prognosticator for patients with PDAC.
To assess the use of plasma free amino acids (PFAAs) as biomarkers for metabolic disorders, it is essential to identify genetic factors that influence PFAA concentrations. PFAA concentrations were absolutely quantified by liquid chromatography–mass spectrometry using plasma samples from 1338 Japanese individuals, and genome-wide quantitative trait locus (QTL) analysis was performed for the concentrations of 21 PFAAs. We next conducted a conditional QTL analysis using the concentration of each PFAA adjusted by the other 20 PFAAs as covariates to elucidate genetic determinants that influence PFAA concentrations. We identified eight genes that showed a significant association with PFAA concentrations, of which two, SLC7A2 and PKD1L2 , were identified. SLC7A2 was associated with the plasma levels of arginine and ornithine, and PKD1L2 with the level of glycine. The significant associations of these two genes were revealed in the conditional QTL analysis, but a significant association between serine and the CPS1 gene disappeared when glycine was used as a covariate. We demonstrated that conditional QTL analysis is useful for determining the metabolic pathways predominantly used for PFAA metabolism. Our findings will help elucidate the physiological roles of genetic components that control the metabolism of amino acids.
Background: Cardiac-specific myosin light chain kinase (cMLCK), encoded by MYLK3 , regulates cardiac contractility through phosphorylation of ventricular myosin regulatory light chain. However, the pathophysiological and therapeutic implications of cMLCK in human heart failure remain unclear. We aimed to investigate whether cMLCK dysregulation causes cardiac dysfunction and whether the restoration of cMLCK could be a novel myotropic therapy for systolic heart failure. Methods: We generated the knock-in mice ( Mylk3 +/fs and Mylk 3 fs/fs ) with a familial dilated cardiomyopathy–associated MYLK3 frameshift mutation ( MYLK3 +/fs ) that had been identified previously by us (c.1951-1G>T; p.P639Vfs*15) and the human induced pluripotent stem cell–derived cardiomyocytes from the carrier of the mutation. We also developed a new small-molecule activator of cMLCK (LEUO-1154). Results: Both mice ( Mylk3 +/fs and Mylk 3 fs/fs ) showed reduced cMLCK expression due to nonsense-mediated messenger RNA decay, reduced MLC2v (ventricular myosin regulatory light chain) phosphorylation in the myocardium, and systolic dysfunction in a cMLCK dose–dependent manner. Consistent with this result, myocardium from the mutant mice showed an increased ratio of cardiac superrelaxation/disordered relaxation states that may contribute to impaired cardiac contractility. The phenotypes observed in the knock-in mice were rescued by cMLCK replenishment through the AAV9_ MYLK3 vector. MYLK3 +/fs induced pluripotent stem cell–derived cardiomyocytes reduced cMLCK expression by 50% and contractile dysfunction, accompanied by an increased superrelaxation/disordered relaxation ratio. CRISPR-mediated gene correction, or cMLCK replenishment by AAV9_ MYLK3 vector, successfully recovered cMLCK expression, the superrelaxation/disordered relaxation ratio, and contractile dysfunction. LEUO-1154 increased human cMLCK activity ≈2-fold in the V max for ventricular myosin regulatory light chain phosphorylation without affecting the K m . LEUO-1154 treatment of human MYLK3 +/fs induced pluripotent stem cell–derived cardiomyocytes restored the ventricular myosin regulatory light chain phosphorylation level and superrelaxation/disordered relaxation ratio and improved cardiac contractility without affecting calcium transients, indicating that the cMLCK activator acts as a myotrope. Finally, human myocardium from advanced heart failure with a wide variety of causes had a significantly lower MYLK3 / PPP1R12B messenger RNA expression ratio than control hearts, suggesting an altered balance between myosin regulatory light chain kinase and phosphatase in the failing myocardium, irrespective of the causes. Conclusions: cMLCK dysregulation contributes to the development of cardiac systolic dysfunction in humans. Our strategy to restore cMLCK activity could form the basis of a novel myotropic therapy for advanced systolic heart failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.