Background: The burden of drug resistant tuberculosis in Africa is largely driven by the emergence and spread of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. MDR-TB is defined as resistance to isoniazid and rifampicin, while XDR-TB is defined as MDR-TB with added resistance to any of the second line injectable drugs and any fluoroquinolone. The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic. The molecular mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using various genotyping tools. The study aimed to analyse the drug resistant lineages in circulation and transmission dynamics of these lineages in Africa by describing outbreaks, nosocomial transmission and migration. Viewed as a whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa. Methods: A systematic review was performed on peer reviewed original research extracted from PubMed reporting on the lineages associated with drug resistant TB from African countries, and their association with outbreaks, nosocomial transmission and migration. The search terms "Tuberculosis AND drug resistance AND Africa AND (spoligotyping OR molecular epidemiology OR IS6110 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)" were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa. Results: Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance within the continent. Lineage 4 predominates across Africa demonstrating the ability of "modern strains" to adapt and spread easily. Most studies under review reported primary drug resistance as the predominant type of transmission. Drug resistant TB strains are associated with community and nosocomial outbreaks involving MDRand XDR-TB strains. The under-use of molecular epidemiological tools is of concern, resulting in gaps in knowledge of the transmission dynamics of drug resistant TB on the continent. Conclusions: Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse genotypes are driving the epidemiology of drug resistant TB across the continent.
Background The burden of drug resistant tuberculosis (TB) in Africa is largely driven by the emergence and spread of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic, resulting in high HIV/TB co-morbidity rates. The molecular mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using various genotyping tools. Viewed as a whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa.Methods A systematic review was performed on peer reviewed original research extracted from PubMed reporting on the molecular epidemiology of drug resistant TB from African countries. The search terms “Tuberculosis AND drug resistance AND Africa AND (spoligotyping OR molecular epidemiology OR IS6110 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)” were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa. Only studies reporting on the molecular epidemiology of drug resistant TB in Africa were included in the analysis.Results Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance within the continent. It has been demonstrated that drug resistant TB strains are associated with community and nosocomial outbreaks. Outbreaks have been described both in immunocompromised and immunocompetent individuals, involving MDR- and XDR-TB strains. Furthermore, the role of migration in the transmission of drug resistant TB strains has been demonstrated in certain parts of Africa. Of concern is the under-use of molecular epidemiological tools, resulting in gaps in knowledge of the transmission dynamics of drug resistant TB on the continent.Conclusions Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse genotypes are driving the epidemiology of drug resistant TB across the continent. To address knowledge gaps, there is a need for routine surveillance and extensive epidemiological investigations across the continent.
Background The burden of drug resistant tuberculosis in Africa is largely driven by the emergence and spread of multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. MDR-TB is defined as resistance to isoniazid and rifampicin, while XDR-TB is defined as MDR-TB with added resistance to any of the second line injectable drugs and any fluoroquinolone. The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic. The molecular mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using various genotyping tools. The study aimed to analyse the drug resistant lineages in circulation and the transmission dynamics of these lineages in Africa by describing outbreaks, nosocomial transmission and migration. Viewed as a whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa. Methods A systematic review was performed on peer reviewed original research extracted from PubMed reporting on the lineages associated with drug resistant TB from African countries, and their association with outbreaks, nosocomial transmission and migration. The search terms “Tuberculosis AND drug resistance AND Africa AND (spoligotyping OR molecular epidemiology OR IS6110 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)” were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa. Results Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance within the continent. Lineage 4 predominates across Africa demonstrating the ability of these “modern strains” to adapt and spread easily. Most studies under review reported primary drug resistance as the predominant type of transmission. Drug resistant TB strains are associated with community and nosocomial outbreaks involving MDR- and XDR-TB strains. The under-use of molecular epidemiological tools is of concern, resulting in gaps in knowledge of the transmission dynamics of drug resistant TB on the continent.Conclusions Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse genotypes are driving the epidemiology of drug resistant TB across the continent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.