Hydro-climatic extremes can affect the reliability of electricity supply, in particular in countries that depend greatly on hydropower or cooling water and have a limited adaptive capacity. Assessments of the vulnerability of the power sector and of the impact of extreme events are thus crucial for decisionmakers, and yet often they are severely constrained by data scarcity. Here, we introduce and validate an energy-climate-water framework linking remotely-sensed data from multiple satellite missions and instruments (TOPEX/POSEIDON. OSTM/Jason, VIIRS, MODIS, TMPA, AMSR-E) and field observations. The platform exploits random forests regression algorithms to mitigate data scarcity and predict river discharge variability when ungauged. The validated predictions are used to assess the impact of hydroclimatic extremes on hydropower reliability and on the final use of electricity in urban areas proxied by nighttime light radiance variation. We apply the framework to the case of Malawi for the periods 2000-2018 and 2012-2018 for hydrology and power, respectively. Our results highlight the significant impact of hydro-climatic variability and dry extremes on both the supply of electricity and its final use. We thus show that a modelling framework based on open-access data from satellites, machine learning algorithms, and regression analysis can mitigate data scarcity and improve the understanding of vulnerabilities. The proposed approach can support long-term infrastructure development monitoring and identify vulnerable populations, in particular under a changing climate.
Any hydropower project requires an ample availability of stream flow data. Unfortunately, most of the hydropower projects especially small hydropower projects are conducted on ungauged river and consequently hydrologists have for a longtime used stream flow estimation methods using the mean annual flows to gauge rivers. Unfortunately flow estimation methods which include the runoff data method, area ratio method and the correlation flow methods employ a lot of assumptions which affect their uncertainty. This study was conducted on Bua River in Malawi to unveil the uncertainties of these flow estimation methods. The study was done on a well gauged catchment in order to highlight the variations between the observed, true stream flows and the estimated stream flows for uncertainty analysis. After regionalizing the homogenous sites, catchments using L-moments, an uncertainty analysis was done which showed that the area method is better followed by the correlating flow method and lastly the runoff data method in terms of bias, accuracy and uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.