Cloud interoperability provides cloud services such as Software as a Service (SaaS) or customer system to communicate between the cloud providers. However, one of the most important barriers for existing researches was to adopt the application’s or data’s in cloud computing environments so as to obtain efficient cloud interoperability. This paper focuses on reliable cloud interoperability with a heterogeneous cloud computing resource environment with the objective of providing unilateral provision computing capabilities of a cloud server without the help of human interaction and allowing proper utilization of applications and services across various domains by using an effective cloud environment available at runtime. Moreover, the framework uses hybrid squirrel search genetic algorithm (HSSGA) to select the relevant features from a set of extracted features in order to eliminate irrelevant data which provides advantages of low computational time and less memory usage. Thereafter, for a proper selection of cloud server with respect to the selected features, the system has developed the improved adaptive neuro-fuzzy inference system (I-ANFIS) which provides accurate server selection and helps against uncertainties caused by servers or applications. Hence, the experimental result of the proposed framework gives an accuracy of 94.24% and remains more efficient compared to existing frameworks.
The increasing demand for cloud computing has shifted business toward a huge demand for cloud services, which offer platform, software, and infrastructure for the day-to-day use of cloud consumers. Numerous new cloud service providers have been introduced to the market with unique features that assist service developers collaborate and migrate services among multiple cloud service providers to address the varying requirements of cloud consumers. Many interfaces and proprietary application programming interfaces (API) are available for migration and collaboration services among cloud providers, but lack standardization efforts. The target of the research work was to summarize the issues involved in semantic cloud portability and interoperability in the multi-cloud environment and define the standardization effort imminently needed for migrating and collaborating services in the multi-cloud environment.
Enterprise Service Bus is an infrastructure to facilitate Service Oriented Architecture (SOA). SOA has gained a lot of attention over the most recent years and has become the de-facto standard for web application and software component integration. Web services are the prominent model for interoperable applications across heterogeneous systems and electronic business which use SOA and it has been used in various applications. The web services available on the web is increasing day by day, hence web service discovery is becoming a difficult and time consuming task. To discover services, clustering web services is an efficient approach. It is also necessary to compose several web services in order to achieve the user's goal. The chapter presents the background of web services and the various data mining techniques used for clustering web services. The chapter presents the various web services clustering method and the related work that discusses the various techniques to cluster the web services will also be addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.