Study DesignA descriptive experimental study.PurposeThe purpose of this study was to describe the reliability and accuracy of palpable anterior neck landmarks (angle of the mandible, hyoid bone, thyroid cartilage, and cricoid cartilage) for the identification of cervical spinal levels in a slight neck-extended position as in anterior approach cervical spinal surgery.Overview of LiteratureStandard, palpable anatomical landmarks for the identification of cervical spinal levels were described by Hoppenfeld using the midline palpable anterior structures (angle of the mandible [C2 body], hyoid bone [C3 body], thyroid cartilage [C4–C5 disc], cricoid cartilage [C6 body], and carotid tubercle [C6 body]) to determine the approximate level for skin incisions. However, in clinical practice, patients are positioned with a slight neck extension to achieve cervical lordosis. This positioning (neck extension) may result in changes in the locations of anatomical landmarks compared with those reported in previous studies.MethodsThis experimental study was conducted on 96 volunteers. Each volunteer was palpated for locating four anatomical landmarks three times by three different orthopedic surgeons. We collected data from the level of the vertebral body or the vertebral disc matching the surface anatomical landmarks from the vertical reference line.ResultsAccuracy of the angle of the mandible located at the C2 vertebral body was 95.5%, the hyoid bone located at the C2/3 intervertebral disc was 51.7%, the thyroid cartilage located at the C4 vertebral body was 42%, and the cricoid cartilage located at the C5/6 intervertebral disc was 43.4%.ConclusionsWith the neck in a slightly extended position to achieve cervical lordosis, the angle of the mandible, the hyoid bone, the thyroid cartilage, and the cricoid cartilage were most often located at the C2 body, the C2/3 disc, the C4 body, and the C5/6 disc, respectively. The angle of the mandible and the hyoid bone are highly reliable surface anatomical landmarks for the identification of cervical spinal levels than the thyroid cartilage and the cricoid cartilage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.