Cobalt ferrite (CoFe2O4), an inverse spinal ferrite has high permeability, good saturation 1magnetization and no preferred direction of magnetization, high Curie temperature, and high electromagnetic performance. In the present work 0.2M cobalt nitrate 0.3M ferric nitrate and 0.4 M citric acid is used to synthesis cobalt ferrite nanoparticle by sol technique. As the magnetic property depends on the grain size of the synthesized nanoparticle, metal nitrate to citric acid ratio is varied from 0.8, 0.6 and 0.4 and the structural, functional morphological and magnetic characteristics are analyzed. The structural analysis shows the decrease in the average crystallite from 37 to 27nm when CA/MN ratio decreases from 0.8 to 0.4. The strain is directly proportion dislocation density and it reflects the growth of the average grain size, and in the present study, it reflects the same. The calculated lattice parameter is found to be close to 8.373 Å and the volume of the cell is found to be 5.63x10-28 m is close to the standard value for the cobalt ferrite nanoparticles. From the EDS spectrum, the presence of Co, Fe, and O in the synthesized nanoparticles are noted. Functional groups analysis by FTIR shows the presence of organic sources. Surface morphology by Sc electron microscope shows the distribution of spherical sized nanoparticles agglomerated in different sizes and the grain size calculated by image J software are close to the calculated value by Scherrer formula from XRD.Cobalt ferrite (CoFe2O4), an inverse spinal ferrite has high permeability, good saturation 1magnetization and no preferred direction of magnetization, high Curie temperature, and high electromagnetic performance. In the present work 0.2M cobalt nitrate M ferric nitrate and 0.4 M citric acid is used to synthesis cobalt ferrite nanoparticle by sol-gel technique. As the magnetic property depends on the grain size of the synthesized nanoparticle, metal nitrate to citric acid ratio is varied from 0.8, 0.6 and 0.4 and the structural, functional morphological and magnetic characteristics are analyzed. The structural analysis shows the decrease in the average crystallite from 37 to 27nm when CA/MN ratio decreases from 0.8 to 0.4. The strain is directly proportional to dislocation density and it reflects the growth of the average grain size, and in the present study, it reflects the same. The calculated lattice parameter is found to and the volume of the cell is found to the standard value for the cobalt ferrite nanoparticles. From the EDS spectrum, the presence of Co, Fe, and O in the synthesized nanoparticles are noted. Functional groups analysis by FTIR shows the presence of organic sources. Surface morphology by Scanning electron microscope shows the distribution of spherical sized nanoparticles agglomerated in different sizes and the grain size calculated by image J software are close to the calculated value by Scherrer RD, FTIR, SEM, VSM I.
Copper gallium selenide films were deposited for the first time by the pulse electrodeposition technique at different duty cycles in the range of 6 - 50 % at room temperature and at a constant current density of 5 mA cm-2. The films exhibited single phase Copper gallium selenide. Optical band gap of the films varied in the range of 1.68 eV. Surface morphology of the films indicated an increase of grain size from 25 nm to 40 nm with increase of duty cycle. A single Photoluminescence peak was observed at 1.64 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.