Male-male aggression is widespread in the animal kingdom and subserves many functions related to the acquisition or retention of resources such as shelter, food, and mates. These functions have been studied widely in the context of sexual selection, yet the proximate mechanisms that trigger or strengthen aggression are not well known for many taxa. Various external sensory cues (visual, audio, chemical) acting alone or in combination stimulate the complex behavioral interactions of fighting behaviors. Here we report the discovery of a 10 kDa protein, termed Loligo β-microseminoprotein (Loligo β-MSP), that immediately and dramatically changes the behavior of male squid from calm swimming and schooling to extreme fighting, even in the absence of females. Females synthesize Loligo β-MSP in their reproductive exocrine glands and embed the protein in the outer tunic of egg capsules, which are deposited on the open sea floor. Males are attracted to the eggs visually, but upon touching them and contacting Loligo β-MSP, they immediately escalate into intense physical fighting with any nearby males. Loligo β-MSP is a distant member of the chordate β-microseminoprotein family found in mammalian reproductive secretions, suggesting that this gene family may have taxonomically widespread roles in sexual competition.
Living in groups is a widespread phenomenon in the animal kingdom. For free-spawning aquatic animals, such as the abalone (Haliotis), being in the close proximity to potential mating partners enhances reproductive success. In this study, we investigated whether chemical cues could be present in abalone mucus that enable species-specific aggregation. A comparative MS analysis of mucus obtained from trailing or fixed stationary Haliotis asinina, and from seawater surrounding aggregations, indicated that water-soluble biomolecules are present and that these can stimulate sensory activity in conspecifics. Purified extracts of trail mucus contain at least three small proteins [termed H. asinina mucus-associated proteins (Has-MAPs)-1-3], which readily diffuse into the surrounding seawater and evoke a robust cephalic tentacle response in conspecifics. Mature Has-MAP-1 is approximately 9.9 kDa in size, and has a glycine-rich N-terminal region. Has-MAP-2 is approximately 6.2 kDa in size, and has similarities to schistosomin, a protein that is known to play a role in mollusc reproduction. The mature Has-MAP-3 is approximately 12.5 kDa in size, and could only be identified within trail mucus of animals outside of the reproductive season. All three Has-MAP genes are expressed at high levels within secretory cells of the juvenile abalone posterior pedal gland, consistent with a role in scent marking. We infer from these results that abalone mucus-associated proteins are candidate chemical cues that could provide informational cues to conspecifics living in close proximity and, given their apparent stability and hydrophilicity, animals further afield.
Exposure to solar ultraviolet B (UV-B) is a known causative factor for many skin complications such as wrinkles, black spots, shedding and inflammation. Within the wavelengths 280–320 nm, UV-B can penetrate to the epidermal level. This investigation aimed to test whether extracts from the tropical abalone [Haliotis asinina (H. asinina)] mucus-secreting tissues, the hypobranchial gland (HBG) and gills, were able to attenuate the inflammatory process, using the human keratinocyte HaCaT cell line. Cytotoxicity of abalone tissue extracts was determined using an AlamarBlue viability assay. Results showed that HaCaT cells could survive when incubated in crude HBG and gill extracts at concentrations between <11.8 and <16.9 μg/ml, respectively. Subsequently, cell viability was compared between cultured HaCaT cells exposed to serial doses of UV-B from 1 to 11 (x10) mJ/cm2 and containing 4 different concentrations of abalone extract from both the HBG and gill (0, 0.1, 2.5, 5 μg/ml). A significant increase in cell viability was observed (P<0.001) following treatment with 2.5 and 5 μg/ml extract. Without extract, cell viability was significantly reduced upon exposure to UV-B at 4 mJ/cm2. Three morphological changes were observed in HaCaT cells following UV-B exposure, including i) condensation of cytoplasm; ii) shrunken cells and plasma membrane bubbling; and iii) condensation of chromatin material. A calcein AM-propidium iodide live-dead assay showed that cells could survive cytoplasmic condensation, yet cell death occurred when damage also included membrane bubbling and chromatin changes. Western blot analysis of HaCaT cell COX-2, p38, phospho-p38, SPK/JNK and phospho-SPK/JNK following exposure to >2.5 μg/ml extract showed a significant decrease in intensity for COX-2, phospho-p38 and phospho-SPK/JNK. The present study demonstrated that abalone extracts from the HGB and gill can attenuate inflammatory proteins triggered by UV-B. Hence, the contents of abalone extract, including cellmetabolites and peptides, may provide new agents for skin anti-inflammation, preventing damage due to UV-B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.