Although many different analytical models of local bond stress–slip have been proposed, considering the possible differences between materials in different countries, their applicability needs to be further explored. In this paper, the local bond stress–slip characteristics of reinforcing bars embedded in concrete with different strengths were experimentally studied. The experimental variables included the concrete strength (20, 40, and 60 MPa) and deformed rebar size (#4, #6, and #8). The experimental results of the bond stress–slip relationship were compared with the Euro-International Concrete Committee (CEB-Comité Euro-International du Béton)-International Federation for Prestressing (FIP-Fédération Internationale de la Précontrainte) Model Code and prediction models found in the literature. In addition, based on the test results, an empirical model of the bond stress–slip relationship was proposed. The evaluation and comparison results show that, regardless of the concrete strength grades, the predicted value calculated using the CEB-FIP Model Code will underestimate the bond strength of the specimens with different steel bar diameters. From this perspective, it is more conservative. In contrast, the proposed model can predict the test results with a reasonable accuracy.
The mechanical properties of traditional pervious concrete are insufficient, which limits its application. In view of the imperfections of traditional permeable concrete in mechanics, this paper aimed to find a suitable material composition that can be used as a feasible mix design of high-performance pervious concrete, to essentially improve its mechanical properties. Based on the view that concrete is a two-phase material, in order to understand the rheological properties of the matrix, it was subjected to a rheological test, and then the filler aggregate was uniformly incorporated into the aforementioned matrix to further explore the composition and properties of the resulting pervious concrete. For the matrix, the orthogonal array employed was L16(45), which consisted of five factors, each with four levels. Base on the fluidity and compressive strength of the tested matrix, three groups of suitable matrixes mix proportions were selected to serve as the matrix type for pervious concrete mix proportion design. Then, an orthogonal array L9(34), which consisted of four controllable three-level factors, was adopted in the pervious concrete. The parameters investigated included the coarse aggregate size, fine aggregate content, matrix type, and aggregate-to-binder ratio. The test results demonstrate that the key factors affecting the compressive strength of the matrix and the pervious concrete were closely related to the cementitious material. In the matrix, the proportion of the cementitious material was the most important factor, while in the pervious concrete, the type of matrix was the most important factor.
The International Roughness Index (IRI) is the standard scale for evaluating road roughness in many countries in the world. The Taipei City government actively promotes a Road Smoothing Project and plans to complete the rehabilitation of the main and minor roads within its jurisdiction. This study aims to detect the road surface roughness in Taipei City and recommend appropriate IRI thresholds for road rehabilitation. A total of 171 asphalt concrete pavement sections in Taipei City with a total length of 803.49 km were analyzed and compared by IRI. The longitudinal profile of the detected road sections was measured using an inertial profiler. The statistical analysis showed that the IRI value prior to road leveling was mainly distributed between 5 and 8 m/km, while the IRI value after road leveling was mainly distributed between 3 and 4.5 m/km. This confirms that the implementation of the Road Smoothing Project has a significant effect on improving road smoothness. Moreover, based on the analysis results, it is recommended that the IRI threshold value for road rehabilitation in Taipei City be set at 4.50 m/km.
The main purpose of this study was to investigate the mix design and performance of fiber-reinforced pervious concrete using lightweight coarse aggregates instead of ordinary coarse aggregates. There were two main stages in the relevant testing work. First, the properties of the matrix were tested with a rheological test and then different amounts of lightweight coarse aggregate and fine aggregate were added to the matrix to measure the properties of the obtained lightweight pervious concrete (LPC). In order to greatly reduce the experimental workload, the Taguchi experimental design method was adopted. An orthogonal array L9(34) was used, which was composed of four controllable three-level factors. There were four test parameters in this study, which were the lightweight coarse aggregate size, ordinary fine aggregate content, matrix type, and aggregate/binder ratio. The research results confirmed that the use of suitable materials and the optimal mix proportions were the key factors for improving the mechanical properties of the LPC. Due to the use of silica fume, ultrafine silica powder, and polypropylene fibers, the 28-day compressive strength, 28-day flexural strength, and 28-day split tensile strength of the LPC specimens prepared in this study were 4.80–7.78, 1.19–1.86, and 0.78–1.11 MPa, respectively. On the whole, the mechanical properties of the prepared LPC specimens were better than those of the LPC with general composition.
This study investigated the mix design and engineering properties of controlled low-strength material (CLSM) by partial replacement of fine aggregate using water purification sludge (WPS). First, an investigation was performed at laboratory scale to assess the effects of the constituent materials and their quantities on the properties of the resulting CLSM. The Taguchi method of experimental design was used to determine optimal parameters for the mix design of CLSM. The parameters investigated included sludge content, water–binder ratio, slag content, accelerator agent content, and coarse aggregate content. Then, a cost analysis of a large-scale production CLSM containing WPS in a commercially available ready-mix concrete batching plant was performed. The results indicated that the water–binder ratio was the most significant factor that contributed to the target value (17.5 cm) of the tube flow of the mixture. The main contributions of experimental factors were water–binder ratio (78.00%), slag content (18.71%), accelerator agent content (2.41%), and sludge content (0.88%). Moreover, the strength of mixtures containing WPS was lower than that of mixtures without WPS. In particular, when the replacement percentage of fine aggregates with WPS was more than 20%, the strength was significantly reduced. The material cost per cubic meter of CLSM containing WPS is about NT$297.42 lower than that of ordinary CLSM, which can reduce the cost by 17.53%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.