Undecanuclear copper clusters, [Cu(11)(micro(9)-Se)(micro(3)-Br)(3)[Se(2)P(OR)(2)](6)] (R = Et, Pr, (i)Pr) (1a-c), were isolated along with closed-shell ion-centered cubes, [Cu(8)(micro(8)-Br)[Se(2)P(OR)(2)](6)] (PF(6)) (2a-c) and [Cu(8)(micro(8)-Se)[Se(2)P(OR)(2)](6)] (3a-c), from the reaction of [Cu(CH(3)CN)(4)](PF(6)), NH(4)[Se(2)P(OR)(2)], and Bu(4)NBr in a molar ratio of 2:3:2 in CH(2)Br(2). The molecular formulations of these clusters were confirmed by elemental analysis, positive FAB mass spectrometry, and multinuclear NMR ((1)H, (31)P, and (77)Se). (77)Se NMR spectra of Cu(11) clusters (1a-c) are of special interest as two inequivalent selenium nuclei of the diselenophosphate (dsep) ligand exhibit different scalar coupling patterns with the adjacent phosphorus nuclei. X-ray analysis of 1c reveals a Cu(11)Se core stabilized by three bromide and six dsep ligands. The central core adopts the geometry of a 3,3,4,4,4-pentacapped trigonal prism with a selenium atom in the center. The coordination geometry for the nonacoordinate selenium atom is tricapped trigonal prismatic. The X-ray structure 2a or 2c consists of a cationic cluster in which eight copper ions are linked by six diselenophosphate ligands with a central micro(8)-Br ion. The shape of the molecule is a bromide-centered distorted Cu(8) cube. Each diselenophosphate ligand occupies square faces of the cube and adopts a tetrametallic tetraconnective coordination pattern. Each copper atom of the cube is coordinated by three selenium atoms with a strong interaction with the central bromide ion. Molecular orbital calculations at the B3LYP level of the density functional theory have been carried out to study the Cu-micro(9)-Se interactions for clusters [Cu(11)(micro(9)-Se)(micro(3)-X)(3)[Se(2)P(OR)(2)](6)] (X = Br, I). Calculations show that the formal bond order of each Cu-micro(9)-Se bond is slightly smaller than half of those calculated for the terminal Cu-micro(2)-Se bonds.
The cluster (Cu8(mu8-Se)[S2P(OEt)2]6)0.54(Cu6[S2P(OEt)2]6)0.46 (2) was prepared in 78% yield from the reaction of Cu8(Se)[Se2P(OPr)2]6 (1) and NH4S2P(OEt)2 in toluene. The central selenide ion in 2 was characterized by 77Se NMR at delta -976 ppm. The simulated solid-state 31P NMR spectrum shows two components with an intensity ratio close to 55:45. The peak centered at 100.7 ppm is assigned to the 31P nuclei in the hexanuclear copper cluster, and that at 101.1 ppm is due to the octanuclear copper cluster. The single-crystal X-ray diffraction analysis confirms the cocrystallization structures of Cu8(Se)[S2P(OEt)2]6 (54%) and Cu6[S2P(OEt)2]6 (46%) (2: trigonal, space group R3, a=21.0139(13) A, c=11.404(3) A, gamma=120 degrees, Z=3). While the octanuclear copper cluster possesses a 3-fold crystallographic axis which pass through the Cu2, Se, and Cu(2A) atoms, the six copper atoms having the S6 point group symmetry in Cu6[S2P(OEt)2]6 form a compressed octahedron. The Cu8(mu8-Se) cubic core in Cu8(mu8-Se)[S2P(OEt)2]6 is larger in size than the metal core in Cu8(mu8-Se)[Se2P(OPr)2]6 (1) although the bite distance of the Se-containing bridging ligand is larger than that of the S ligand. To understand the nature of the structure contraction of the metal core and metal-mu8-Se interaction, molecular orbital calculations have been carried out at the B3LYP level of density functional theory. MO calculations suggest that Cu-mu8-Se interactions are not very strong and a half bond can be formally assigned to each Cu-mu8-Se bond. Moderate Cu...Cu repulsion exists, and it is the bridging ligands that are responsible for the observed Cu...Cu contacts. Hence, the S-ligating copper clusters have greater Cu...Cu separations because each Cu carries more positive charge in the presence of the more electronegative S-containing ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.