The existing Optical Character Recognition (OCR) systems are capable of recognizing images with horizontal texts. However, when the rotation of the texts increases, it becomes harder to recognizing these texts. The performance of the OCR systems decreases. Thus predicting the rotations of the texts and correcting the images are important. Previous work mainly uses traditional Computer Vision methods like Hough Transform and Deep Learning methods like Convolutional Neural Network. However, all of these methods are prone to background noises commonly existing in general images with texts. To tackle this problem, in this work, we introduce a new masked bounding-box selection method, that incorporating the bounding box information into the system. By training a ResNet predictor to focus on the bounding box as the region of interest (ROI), the predictor learns to overlook the background noises. Evaluations on the text rotation prediction tasks show that our method improves the performance by a large margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.