Solder self-alignment is an important phenomenon enabling cost-effective optoelectronics assembly. In this study, the wetting of Sn-rich solder to under bump metallization (UBM) pads is identified as a critical factor affecting self-alignment accuracy. Incomplete wetting of solder to the metallization pads is responsible for chip-to-substrate misalignment larger than 1 μm, while fabrication tolerances, such as solder volume variation and pad diameter deviation, only account for misalignments in the submicron range. To quantitatively investigate the effect of incomplete wetting on self-alignment accuracy, a three-dimensional (3D) model based on a force optimization method was developed. With the input parameters of incomplete solder metallurgical wetting area, position and diameter of metallization pad, volume of individual solder bumps, coefficient of solder surface tension, mass of the chip, external forces acting on the chip, and initial pick-and-place position of the chip before assembly, the model predicts the assembled position of the chip in terms of the misalignments in the X-Y plane and the rotation angle along the Z axis. The model further confirmed that incomplete wetting of solder is the most critical modulator among the undesirable factors affecting solder self-alignment accuracy.
Solder self-alignment is one of the most important technologies for cost effective optoelectronics assembly. In this study, the wetting of Sn-rich solder to the metal pads of chip and substrate was identified as a critical factor significantly affecting self-alignment accuracy during the assembly. Insufficient wetting of solder to the metallization pads was responsible for large chip-to-substrate misalignment post-assembly, while fabrication deviations, such as solder volume variation and pad diameter deviation, only account for misalignments in the range of submicrons. To aid the design of flip-chip assemblies requiring high alignment accuracy, a force optimization model was developed and validated experimentally. With the input parameters of design and manufacturing process for optoelectronics flip-chip assembly using solders, such as insufficient solder metallurgical wetting areas, positions and diameters of metallization pads, volume of individual solder bump, coefficient of solder surface tension, mass of chip, external forces acting on chip, and initial pick-and-place position of chip before assembly, the model predicts the assembled position of the chip in terms of the misalignments in the X-Y planes and the rotation angles along the Z axis. The model further confirmed that insufficient wetting of solder is the most critical modulator among the undesirable factors affecting solder self-alignment accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.