Physiological status plays an important role in clinical diagnosis. However, the temporal physiological data change dynamically with time, and the amount of data is large; furthermore, obtaining a complete history of data has become difficult. We propose a hybrid intelligent scheme for physiological status prediction, which can be effectively utilized to predict the physiological status of patients and provide a reference for clinical diagnosis. Our proposed scheme initially extracted the attribute information of nonlinear dynamic changes in physiological signals. The maximum discriminant feature subset was selected by employing conditional relevance mutual information feature selection. An optimal subset of features was fed into the particle swarm optimization–support vector machine classifier to perform classification. For the prediction task, the proposed hybrid intelligent scheme was tested on the Sleep Heart Health Study dataset for sleep status prediction. Experimental results demonstrate that our proposed intelligent scheme outperforms the conventional machine learning classification methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.