Internal convective cooling of gas-turbine airfoil is essential because turbine inlet temperature becomes higher for pursuing higher thermal efficiency. For higher cooling performance, heat transfer is often enhanced by installing ribs and/or pin-fins in the internal passage. In this study, in order to enhance heat transfer, the combination of spherical dimples, cylindrical protrusions, and transverse square ribs was applied to one wall of a narrow passage. As for the cylindrical protrusions, two different diameter cases were examined. The heat transfer enhancement was measured by a transient infrared thermography method for the Reynolds number of 2,000, 6,000, and 10,000. The pressure loss was also measured in the experiments, and RANS simulation was performed to give a rationale for the experimental results. The present results clearly showed the spatial variation of the local Nusselt number: the high Nusselt number was observed on the rib top-surface and also near the leading edge on the protrusion top-surface. In addition, the areas around the dimple’s trailing-edge on the oblique line connecting the neighbor dimples showed moderately enhanced heat transfer. When two different protrusion-diameter cases were compared, both the mean Nusselt number and the friction factor were similarly higher in the larger protrusion case than the smaller protrusion case, and therefore the larger protrusion case was more effective in cooling even when the pressure loss was taken into account.
The demand for cleaner, more efficient energy has driven the motivation for improving the performance standards for gas turbines. Increasing the combustion temperature is one way to get the best possible performance from a gas turbine. One problem associated with increased combustion temperatures is that particles ingested in the fuel and air become more prone to deposition with an increase in turbine inlet temperature. Deposition on aero-engine turbine components caused by sand particle ingestion can impair turbine cooling methods and lead to reduced component life. It is necessary to understand the extent to which particle deposition affects turbine cooling in the leading edge region of the nozzle guide vane where intricate showerhead cooling geometries are utilized. For the current study, wax was used to dynamically simulate multiphase particle deposition on a large scale showerhead cooling geometry. The effects of deposition development, coolant blowing ratio, and particle temperature were tested. Infrared thermography was used to quantify the effects of deposition on cooling effectiveness. Although deposition decreased with an increase in coolant blowing ratio, results showed that reductions in cooling effectiveness caused by deposition increased with an increase in blowing ratio. Results also showed that effectiveness reduction increased with an increase in particle temperature. Reductions in cooling effectiveness reached as high as 36% at M = 1.0.
Experimental and numerical studies were conducted for the development of the integrated impingement and pin-fin cooling configuration. In the development, the spatial arrangements of impingement hole, pin-fin and film cooling (discharge) hole were the main concern. The temperature measurement was performed for different test pieces with various spatial arrangements to clarify the cooling effectiveness variation with the arrangement and the other cooling parameters. Experiments were conducted with 673K hot gas flow and room temperature cooling air. The Reynolds number of gas side flow was 380000 and cooling air Reynolds number was 5000–30000. Test plate surface temperatures were measured using an infrared camera. The cooling effectiveness obtained from the experiment for one specimen was different from that for a specimen that had the same pin density but a different spatial arrangement. So it was confirmed that an arrangement of hole and pin, as well as pin density, was an important parameter. CFD analysis was also conducted to make clear how spatial arrangement affected internal heat transfer characteristics. Pressure losses were also evaluated for each specimen, and total thermal performance was compared. A basic configuration with one pin at the center of a unit area showed the most superior total thermal performance.
This paper presents the detailed heat transfer coefficient and pressure drop through two different lattice structures suitable for use in the trailing edge of gas turbine airfoil. The lattice structures are located in the converging trailing edge channel with the coolant flow taking a 90 deg turn before entering the lattice structure. Two lattice structures were studied with one lattice structure having four-entry channels and the second lattice structure having two entry channels. Stationary tests were performed at four Reynolds numbers (4000 < Re < 20,000) based on the inlet subchannel diameter. The results show that the two-inlet-channel lattice structure produces higher values of heat transfer coefficient and lower values of pressure drop. The data from the converging lattice structures are compared with the published pin fin data which is the common standard for trailing edge applications. It is seen that the two-inlet-channel lattice structure produces average Nu/Nu0 values in the range of 2.1–3.4 compared to a value of 1.7–2.2 for a pin fin for the current set of Reynolds number. The thermal performance factor for the four-inlet-channel lattice structure is lower than the pin fin structure but the two-inlet-channel lattice structure provides comparable or higher thermal performance compared to a pin fin structure. The lattice structures also provide additional heat transfer area and structural rigidity to the trailing edge of the airfoil. Comparable or higher thermal performance and added structural rigidity can make the lattice structure a suitable alternative of pin fins in trailing edge applications.
An experimental study of the heat transfer distribution and pressure drop through a converging lattice-matrix structure has been performed. This structure represents a gas turbine blade trailing-edge cooling passage. Stationary tests were performed on a scaled up model under three Reynolds numbers (24000<Re<60000). To obtain the wall temperature, the narrow band liquid crystal technique was used, and the heat transfer coefficient value was obtained using the transient method. It’s found that the Nusselt number ratio (Nu/Nu0) is around 4–5, comparing to the channel flow of similar hydraulic diameter and Re, for the whole lattice-matrix structure. Under the impingement and turning areas, the ratio can be as high as 7–8. Pressure data are taken throughout the lattice structure following the flow direction. The pressure drop increases with Reynolds number and as a result there is a decrease in the thermal performance factor at higher Reynolds number. In the present study thermal performance factor is found to be around 1–1.2. For comparison, pin fin based trailing edge configuration has a typical thermal performance factor of 0.7 to 0.85 under the same Reynolds numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.