Multiplicative and additive noises are often introduced in image signals during the image acquisition process and result into degradation of image features. The work done by Perona and Malik in 1990 and its modified versions revolutionized the way through which noises or speckles are removed. The Perona-Malik model requires tuning of the regularization parameter to control and prevent staircase artifacts in restored images. The current manual tuning is a challenging and time consuming practice when a long queue of images is registered for processing. Attempt to automate the regularization parameter appeared in Perona-Malik model with self-adjusting shape-defining constant. Although both multiplicative and additive noise based automated regularizations were presented, the paper stayed silent on matters concerning the automation method that fits with speckle reduction. This paper therefore, presents a comparative analysis of additive and multiplicative noise based automated regularizations. Simulation results and paired samples T-tests reveal that the multiplicative noise based automation outperforms the additive noise based automation for small speckle variances. However, the two automation methods do not significantly differ when large speckle variances are assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.