The performances of fresh and sulfated MnOx-CeO₂ catalysts for selective catalytic reduction of NOx by NH₃ (NH₃-SCR) in a low-temperature range (T < 300 °C) were investigated. Characterization of these catalysts aimed at elucidating the role of additive and the effect of sulfation. The catalyst having a Sn:Mn:Ce = 1:4:5 molar ratio showed the widest SCR activity improvement with near 100% NOx conversion at 110-230 °C. Raman and X-ray photoelectron spectroscopy (XPS) indicated that Sn modification significantly increases the concentration of oxygen vacancies that may facilitate NO oxidation to NO₂. NH₃-TPD characterization showed that the low-temperature NH₃-SCR activity is well correlated with surface acidity for NH3 adsorption, which is also enhanced by Sn modification. Furthermore, as compared to MnOx-CeO₂, Sn-modified MnOx-CeO₂ showed remarkably improved tolerance to SO₂ sulfation and to the combined effect of SO₂ and H₂O. In the presence of SO₂ and H₂O, the Sn-modified MnOx-CeO₂ catalyst gave 62% and 94% NOx conversions as compared to 18% and 56% over MnOx-CeO₂ at temperatures of 110 and 220 °C, respectively. Sulfation of SnO₂-modified MnOx-CeO₂ may form Ce(III) sulfate that could enhance the Lewis acidity and improve NO oxidation to NO₂ during NH₃-SCR at T > 200 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.